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INTRODUCTION

Le présent travail porte sur I’amélioration du systéme de controle de mouvement d’un véhicule
sous-marin autonome (AUV). Le systéme actuel repose sur un filtre de Kalman étendu (EKF)
combinant les données d’une centrale inertielle (IMU) et d’un Doppler Velocity Log (DVL),
comme sur le prototype principal AUVS8.1. Dans le cadre du développement du nouveau
prototype LITEI, un second IMU a été intégré au filtre de Kalman en remplacement du DVL,
une configuration qui nécessite encore des validations expérimentales. Les données issues des
capteurs alimentent ensuite un controleur prédictif non linéaire adaptatif (MPC) chargé de
générer les signaux PWM pour les huit moteurs du véhicule. Malgré la stabilité générale
obtenue, le systéme présente une accumulation progressive d’erreurs au fil du temps, méme
avec I’ajout de nouveaux capteurs. Afin de pallier ce phénomeéne, 1’objectif de ce projet est de
concevoir une méthode rigoureuse et efficace de correction de la dérive, en s’appuyant sur
I’intégration d’un systéme de cartographie basé¢ sur [’algorithme VSLAM (Visual
Simultaneous Localization and Mapping). L’analyse des données issues de VSLAM doit
permettre la correction en temps réel via le module de commande, afin d’améliorer la précision

et la robustesse globale de la plateforme en conditions réelles.






CHAPITRE 1
DEFINITION DE LA PROBLEMATIQUE

1.1 Définition de la dérive

La dérive est définie comme la déviation progressive et incontrélée (Le Robert, [s d]). Dans le
cadre de ce projet, la définition utilisée sera : la déviation progressive et incontrolée du sous-
marin, en rotation ou en translation, qui n’est pas détectée ou corrigée. Cette déviation ne peut
étre mesurée avec les capteurs du sous-marin puisque ceux-ci ne détectent pas les mouvements,
autrement la déviation serait corrigée par le contrdle du sous-marin. La dérive doit donc étre
¢valuée par un systeme externe au sous-marin afin d’obtenir des mesures représentatives. Selon
les observations préalables, la dérive actuelle est surtout en rotation sur 1’axe z et semble venir
des imprécisions de I’'IMU. Cependant, dans certaines conditions particuliéres, d’autres
mouvements incontrolés peuvent apparaitre. Par exemple, lorsque le DVL est incapable de
calculer la vitesse de déplacement, le sous-marin ne peut plus calculer sa position, celui-ci
commence donc a se déplacer sur le plan horizontal de facon quasi aléatoire. Cela arrive
lorsque 1’onde envoyée par le DVL n’est pas renvoyée ou est déform¢, comme lorsque le sous-

marin est retourné ou lorsque le fond de la piscine est trop souple.

1.2 Cas d’utilisation

Ce projet vise a améliorer la stabilité a long terme des sous-marins autonomes en réduisant la
dérive en rotation et en position. Pour cela, 1’algorithme VSLAM utilise les images et les
données de I’IMU fournies par la caméra afin de calculer la vitesse et la position actuelle. Ces
informations sont ensuite utilisées pour corriger la dérive générée par les imprécisions des
capteurs. Cependant, I’algorithme VSLAM a besoin de reperes visuels pour fonctionner. Cela
empéche donc I’utilisation en pleine mer, puisqu’aucun élément visible ne serait disponible a

proximité. Toutefois, la dérive est moins problématique pour cette utilisation puisqu’il n’y



aurait rien a proximité avec quoi le sous-marin risquerait d’entrer en collision. Ce projet est
particuliérement pertinent pour les environnements étroits avec beaucoup d’éléments visuels a
éviter, comme des cavernes sous-marines ou des €épaves. Les applications de ce projet sont tres
spécifiques aux sous-marins autonomes, mais pourraient également servir pour des drones
aériens dans des environnements qui ne permettent pas I’utilisation de GPS, comme des mines
(DroneXperts, 2025) ou des opérations qui demandent de la discrétion. Il est important de noter
que ces technologies existent déja, mais ne sont pas tres répandues puisque le GPS est une
meilleure solution lorsque disponible et que la plupart utilisent un LIDAR (Aitken, 2025), bien
que d’autres technologies existent aussi. Ce projet utilise uniquement une caméra
stéréoscopique avec une centrale inertielle intégrée pour le VSLAM, ce qui pourrait

possiblement étre une autre solution pour les drones aériens.

1.3 Impact environnemental, économique et social

1.3.1 Environnemental

D’un point de vue environnemental, la réduction de la dérive de navigation se traduit
directement par une meilleure efficacité énergétique. En conservant davantage d’énergie au fil
du temps, le prototype diminue sa consommation globale de batterie, prolongeant ainsi sa durée
de vie en réduisant la fréquence des cycles de recharge. Cela permet non seulement de limiter
les déchets électroniques, mais aussi de réduire I’empreinte environnementale liée a la
production et au recyclage des batteries, ainsi qu’a la production de I’énergie nécessaire a la
recharge. Comme 1’indiquent Soori et al. (2023), « optimization of energy consumption in [...]
robots can reduce operating costs, improve performance and increase the lifespan of the
robot. » (traduction libre : I’optimisation de la consommation d’énergie dans les robots |...]
peut réduire les colits d’exploitation, améliorer les performances et augmenter la durée de vie

du robot.)



A I’inverse, la dépendance aux capteurs de navigation & 1’estime tels que ’IMU, le DVL et le
capteur de profondeur entraine une dérive cumulative, car ces instruments ne possédent pas de
mécanismes intrinséques de correction d’erreur de dérive. Lorsqu’ils sont intégrés dans le
systéme de controle, cette dérive est amplifiée, générant des inefficacités importantes lors de
missions de longue durée ou sur de longues distances. Le prototype peut perdre sa cible et étre
forcé de réexaminer I’environnement, consommant ainsi plus d’énergie qu’il n’en faudrait et
gaspillant un temps précieux. L’utilisation d’un algorithme SLAM corrige activement ce
probléme en rectifiant en continu la dérive, réduisant ainsi a la fois les pertes de temps et les
pertes d’énergie. Cela profite directement a I’environnement en diminuant la consommation

énergétique du systeme et en prolongeant la durée de vie utile de ses batteries.

Il est vrai que I’ajout d’un module SLAM augmente la demande computationnelle. Cependant,
les deux prototypes de S.O.N.LLA. alimentent leurs ordinateurs embarqués avec une tension
constante, ce qui fixe la limite supérieure de consommation ¢lectrique. Méme sur des
plateformes ou la consommation énergétique de I’ordinateur varie, des algorithmes efficaces
comme ORB-SLAM et SVO sont connus pour équilibrer performance et faible consommation
énergétique. Comme le soulignent Chen et al. (2024), « algorithms like ORB-SLAM and SVO
offer a more balanced approach, achieving moderate performance with significantly lower
energy consumption. [Especially for drones] where onboard computational power is limited,
and power efficiency is critical. These algorithms, with lower energy demands, are well-suited
for platforms where sustainable energy usage is prioritized, and continuous operation is needed
with minimal energy wastage. » (traduction libre : les algorithmes tels qu’ORB-SLAM et SVO
offrent une approche plus équilibrée, atteignant des performances modérées avec une
consommation énergétique significativement réduite. [Particulierement pour les drones] ou la
puissance de calcul embarquée est limitée et ou I’efficacité €nergétique est cruciale. Ces
algorithmes, avec leurs faibles besoins énergétiques, conviennent parfaitement aux
plateformes ou I'utilisation durable de 1’énergie est prioritaire et ou un fonctionnement continu

est nécessaire avec un minimum de gaspillage énergétique.) Dans notre cas, 1’énergie



¢conomisée en réduisant les temps de recherche inefficaces compense largement les cofits

computationnels liés aux corrections de dérive, produisant un bénéfice environnemental net.

1.3.2 Economique

L’intégration d’un algorithme de VSLAM engendre d’abord des colts initiaux liés au
développement logiciel, a I’intégration systéme et, le cas échéant, a I’ajout de capteurs ou de
capacités de calcul supplémentaires. Toutefois, ces colts fixes peuvent &tre amortis sur
I’ensemble des missions réalisées par le prototype. Sur le plan opérationnel, I'utilisation du
VSLAM permet de réduire la dérive associée a la navigation a I’estime, ce qui diminue la durée
moyenne des missions, ainsi que les risques d’échec. Cette amélioration de la fiabilité et de la
rapidité se traduit par une réduction des cotts liés au temps de mission, a la consommation
énergétique et aux interventions humaines nécessaires a la récupération ou a la reconfiguration

du systéme.

De plus, la capacité de fermeture de boucle et de relocalisation offerte par le VSLAM, telle
que mise en évidence par Rahman et al. (2019) : « the inclusion of a VSLAM algorithm enables
the use of loop-closure and re-localization, both having a significant impact on the precision
of current and expected navigation. » (traduction libre : I’inclusion d’un algorithme VSLAM
permet ’utilisation de la fermeture de boucle et de la relocalisation, ayant toutes deux un
impact significatif sur la précision de la navigation actuelle et prévue.) Ceci contribue a
accroitre le taux de succeés des missions et a limiter le risque de perte du véhicule, lequel
représente un coit financier majeur. A moyen et long terme, la diminution des risques
opérationnels, de ’'usure du matériel et des temps d’arrét permet d’améliorer la rentabilité
globale du systéme. Ainsi, bien que I’implémentation du VSLAM implique un investissement
initial non négligeable, celui-ci est compensé par des économies cumulées et une meilleure

prévisibilité des colts lors des déploiements répétés.



1.3.3 Social

La dimension sociale de ce projet se manifeste principalement dans les domaines de la sécurité,
de la confiance et de I’accessibilité. Les véhicules sous-marins autonomes (AUV) qui dérivent
ou échouent de facon imprévisible représentent des risques pour les plongeurs humains, les
infrastructures environnantes et les véhicules eux-mémes. Chen et al. (2025) notent, dans une
¢tude de synthése sur les défaillances d’AUV, que « many of the typical failures are due to
some kind of instrument failure such as Gyroscope or accelerometer failure, DVL antenna and
sensor failure, and Depth gauge’s pressure sensor damage. » (traduction libre : nombre des
défaillances typiques sont dues a un type de panne instrumentale, comme une panne de
gyroscope ou d’accélérométre, une défaillance de I’antenne ou du capteur DVL, et des
dommages au capteur de pression de la jauge de profondeur.) Ces défaillances représentent

non seulement des défis techniques, mais aussi des risques en matiére de sécurité.

L’utilisation de 1’odométrie visuelle inertielle (VIO), qui combine SLAM et données d’IMU,
a démontré des résultats probants pour maintenir la navigation lorsque les capteurs
conventionnels ne fonctionnent pas comme prévu. Joshi et al. (2023) observent ainsi que VIO
« has shown results in aiding the AUV navigate its environment when standard sensors do not
perform as expected. » (traduction libre : a montré des résultats dans ’aide a la navigation de
I’AUV dans son environnement lorsque les capteurs standards ne fonctionnent pas comme
prévu.) L’intégration de cette approche réduit les risques li€és aux pannes instrumentales,
limitant les mouvements imprévisibles susceptibles de mettre en danger des plongeurs,

d’endommager d’autres véhicules ou de nuire a I’environnement marin.

En améliorant la stabilité et la fiabilité de la navigation, le SLAM et la VIO renforcent la
sécurité humaine et les taux de réussite des missions. Au-dela de ces bénéfices immeédiats, la
diminution des cofits et I’amélioration de 1’efficacité rendent les technologies de navigation
avancées plus accessibles a un plus grand nombre d’organisations, des groupes de recherche

universitaires aux institutions de plus petite taille. Cette accessibilit¢é accrue favorise



I’innovation, la collaboration et la formation, des bénéfices sociaux majeurs qui dépassent le

simple cadre technique du projet.



CHAPITRE 2
EQUIPEMENT ET FACTEURS EXTERNES

2.1 Prototypes

Le club S.O.N.I.LA. posséde actuellement deux prototypes actifs et une récemment retraité.
Bien que les prototypes soient globalement similaires, chacun possede des €¢léments et des
concepts uniques qui les distinguent. Ces particularités permettent de les combiner pendant les

compétitions afin d’accomplir les missions de maniere optimale et rapide.

2.1.1 AUVS.1

Capteur de profondeur IMU (a Pintérieur)

Caméra stéréoscopique

Figure 1 Vue de dessous de I'AUVS.1 avec les capteurs
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L’AUVS.1 est le plus vieux des 2 prototypes actifs. Sa conception a commencé en 2019, mais
a cause de la pandémie, sa premicre compétition ne fut qu’en 2021. Il est équipé de huit
moteurs, un DVL, un IMU, un capteur de profondeur et une caméra stéréoscopique. C’est le

sous-marin principal lors de la compétition.

2.1.2 LITE1

Caméras\téréoscopique
N ;

IMU (a P’intérieur)

i
J.-{\ Capteur de profondeur

Figure 2 Vue de dessous du LITEI avec les capteurs

Le LITE1 est le sous-marin le plus récent de S.O.N.I.A. Il a été congu et fabriqué en 2025 et a
participé a sa premiere compétition la méme année. L’idée derriere sa conception était de faire
un prototype plus petit et plus léger qui ne serait pas capable de faire la compétition seul, mais
qui viendrait soutenir le sous-marin principal en accomplissant les objectifs les plus simples et
en lui transmettant des informations. Afin de réduire le poids, certaines fonctionnalités et

certains capteurs ne sont pas présents sur le LITE1, notamment le DVL.
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2.2 Capteurs

Cette section présente la liste des capteurs utilisés dans les sous-marins qui sont pertinents pour

ce projet.

2.2.1 IMU

Les 2 prototypes actuels utilisent le VN-100 (VectorNav, [s d]) de VectorNav. Il s’agit d’une
centrale inertielle et d’un systéme de référence d'attitude et de cap. Celui-ci combine
accélérometres, gyroscopes et magnétométres triaxiaux afin de fournir des données
d’accélération et de rotation en 3 dimensions a haute fréquence. Il communique avec
I’ordinateur de bord par le port série. Ce capteur sert de référence pour la vitesse de rotation et
I’orientation du sous-marin. Cependant, malgré la grande précision de cet appareil, celui-ci est
difficile a calibrer correctement dans ce contexte d’utilisation. En effet, les magnétometres
doivent étre recalibrés pour chaque utilisation qui se situe a plus d’une centaine de kilométres
de la calibration précédente. Pour cela, il faut faire tourner I’IMU dans tous les axes, ce qui est
difficile dans le cas présent puisque ce capteur ne peut pas €tre sorti facilement du sous-marin.
11 faut donc tourner dans tous les sens les sous-marins qui peuvent faire plus de 40 kilos, ce qui
n’est pas évident et qui affecte négativement la qualité de la calibration. Tout cela cause une

dérive des données qui proviennent de I’IMU qui impacte la rotation du sous-marin.

2.2.2 DVL

L’AUVS.1 utilise le Pathfinder (Teledyne marine, [s d]) de Teledyne afin de connaitre sa
vitesse par rapport au fond de 1’eau. Cette information est calculée en utilisant 1’effet doppler :
le capteur envoie une onde sonore vers le fond, puis mesure la fréquence du rebond. La
déformation entre le signal envoyé et celui regu permet de connaitre la vitesse du sous-marin.
Ce capteur transmet ses informations jusqu’a 1’ordinateur par Ethernet. Le Pathfinder est

¢galement de grande précision, mais le probléme vient de 1’information fournie. Puisque le
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DVL calcule la vitesse et que le controle a besoin de connaitre la position, il faut intégrer les
données recues afin d’obtenir la position actuelle du sous-marin, ce qui est fait implicitement
par I’EKF. Cela veut donc dire que la moindre erreur cause un décalage permanent dans la
position calculée. Il est possible que le DVL soit incapable de calculer la vitesse dans certaines
conditions, comme lorsque celui-ci n’est pas orienté vers le fond de la piscine. Il est également
possible que la communication entre [’ordinateur et le capteur soit temporairement
interrompue. Dans ces cas-la, ou toute autre situation ou le systéme de contrdle n’a pas la
vitesse du sous-marin, il y aura un décalage entre la position réelle du sous-marin et celle

calculée, puisque les déplacements ne seront pas pris en compte.

Il est important de noter que le LITE1 n’a pas de DVL et se base sur les données d’accélération
linéaires afin de connaitre sa position. Puisque pour obtenir cette information a partir de
I’accélération il faut faire une double intégration, cela ne fait qu’empirer le probléme de dérive

de déplacement.

2.2.3 Capteur de profondeur

Les 2 sous-marins utilisent des capteurs de pression afin de connaitre leur profondeur.
L’AUVS.1 utilise le ISD4000 (Impact Subsea, [s d]) d’Impact Subsea et le LITE1 utilise le
Bar(02 (Blue Robotics, [s d]) de Blue Robotics. L utilisation de 2 capteurs différents s’explique
par une différence importante de poids, de taille et de prix. Afin de réduire le poids du LITEI,
un capteur plus petit et 1éger a été choisi. Ces 2 capteurs communiquent a 1’ordinateur, soit par
le port série et 1’autre par 12C, et fonctionnent sur le méme principe : la profondeur du sous-
marin par rapport a un point de référence est calculée a I’aide de la pression et de la température
de I’eau autour. La valeur obtenue n’a pas de dérive puisque la valeur de référence est mise a
jour a chaque essai puisqu’il suffit d’enregistrer la pression a la surface avec le capteur. La
profondeur calculée est donc utilisée comme une vérité absolue dans le contrdle actuel du sous-

marin.
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2.2.4 Caméra stéréoscopique

Afin de pouvoir utiliser I’algorithme VSLAM, les 2 sous-marins utilisent une caméra
stéréoscopique afin d’obtenir un nuage de points de I’environnement. L’ AUVS.1 utilise la ZED
Mini (Stereolabs, [s d]) et le LITE1 utilise la ZED 21 (Stereolabs, [s d]), qui proviennent toutes
les deux de Stereolabs. L utilisation de 2 mod¢les différents est due a la taille des prototypes :
le LITE1L a été concu pour pouvoir utiliser la ZED 2i, mais I’AUV8.1 ¢était déja construit
lorsque la décision d’ajouter des caméras stéréoscopiques a été prise. Malheureusement, ce
modele-ci ne rentrait pas dans la coque, 1’équipe a donc décidé de prendre la ZED Mini qui est
plus compacte. Bien que les spécifications des 2 caméras ne soient pas identiques, elles
communiquent toutes les 2 par USB et accomplissent la méme fonction dans le cadre de ce
projet, c’est-a-dire de permettre le fonctionnement de 1’algorithme SLAM. La perception de
profondeur des caméras repose sur le décalage entre les images fournies par les 2 capteurs
présents sur I’appareil. En connaissant les spécifications des capteurs ainsi que la distance entre

ceux-ci, il est possible de calculer la distance entre la caméra et les objets devant celle-ci.

23 Autres technologies des prototypes

Les 2 sous-marins actuels utilisent le Jetson AGX Xavier (NVIDIA, [s d]) de NVIDIA comme
ordinateur de bord. C’est lui qui le cerveau du systéme et qui est responsable de tous les calculs,
incluant 1’algorithme VSLAM et le Contrdle. Le Xavier est un ordinateur complet dans un
format compact. Il possede un CPU ARM 64 bits avec 8 cceurs, un GPU NVIDIA et 64 Go de
mémoire DDR4. 1I roule le Jetpack 5.1.5 (NVIDIA Developer, [s d]) qui est une version
modifiée d’Ubuntu 20.04 fournie par NVIDIA pour ce type d’ordinateur. CUDA 11.4.19 est
¢galement inclus, ce qui est essentiel afin de faire fonctionner I’algorithme VSLAM.
Finalement, beaucoup de libraires sont directement compatibles avec les ordinateurs Jetson,
comme NVIDIA Isaac ROS Visual SLAM, une libraire de VSLAM, ainsi que le kit de

développement logiciel des caméras Stereolabs. Il est prévu dans un futur proche que le club
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passe au NVIDIA Jetson AGX Orin qui est la génération suivante de ce type d’ordinateur.
L’Orin est plus puissant que le Xavier, roule un Jetpack et une version de CUDA plus récents
et offre plus de compatibilité. Cependant, tout ce projet sera complété sur les Xavier actuels

puisqu’il est impossible de savoir quand le club sera en mesure d’obtenir des Orins.

24 Autres équipements
241 Tether

Le tether est un rouleau de fil d’Ethernet allant de 50 a 120 metres de longueur qui permet de
lier la communication Duckbox vers les prototypes. A cause des contraintes de
communications dans les milieux marins, le moyen de communication avec 1’ordinateur de
bord est par fil Ethernet. Le cable est hybride comprenant une extrémité RJ45 standard pour
connexion a la Duckbox et un connecteur SubConn de MacArtney, congu pour 1’utilisation
dans 1’eau, pour la connexion au sous-marin. Cette configuration assure une communication

fiable entre la Duckbox et le prototype en milieu subaquatique.

2.4.2 Duckbox

La Duckbox est un composant servant de point central de communication avec les prototypes
durant toutes les phases opérationnelles. Elle est composée d’un routeur, d’un ordinateur, d’un
commutateur réseau (switch) et d’une batterie portable. Cet ensemble met en place un réseau
local permettant d’établir une connexion a partir des ordinateurs personnels vers les prototypes
parce qu’une communication sans fil est impossible a établir pour un prototype qui est
submergé¢ dans 1’eau : les ondes radio ne sont pas favorisées pour la communication parce que
ces dernicres sont absorbées dans 1’eau. La Duckbox fait également office de point d’acces a
Internet, permettant de récupérer les mises a jour des projets hébergés sur la plateforme

GitHub.
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243 Chickenbox

La Chickenbox est utilisée comme source d’alimentation pour le prototype lors des essais
réalisés hors de 1’eau. Son objectif est de remplacer les batteries et de fournir aux prototypes
une tension constante de 16 V. Ce dispositif permet de travailler sur les prototypes sur de
longues périodes a I’extérieur de I’eau sans avoir a surveiller en continu le niveau de charge

des batteries.

244 Ordinateurs portables

Le club possede des ordinateurs portables de travail pour la programmation et tout autre travail
de club. Ils sont aussi utilisés pour communiquer aux prototypes et de travailler directement

sur I’ordinateur de bord. Tous les ordinateurs roulent sur Ubuntu 20.04 ou 22.04.

2.5 Facteurs externes dans les prototypes

Les prototypes AUVS.1 et LITE1 possédent deux batteries et une batterie respectivement. Ces
batteries offrent une autonomie aux sous-marins d’environ deux a trois heures. Il est a noter
qu’un faible niveau de charge des batteries peut affecter la performance du systéme en raison
des pics de courant demandés par les moteurs. De plus, les deux sous-marins sont entierement
fabriqués en aluminium et ont été testés pour des opérations inférieures a 10 metres. Pour finir,
le champ magnétique généré par les huit moteurs électriques des sous-marins peut influencer

le magnétometre dans I’IMU et, par conséquent, altérer les mesures.

2.6 Facteurs externes dans I’environnement

Les environnements dans lesquels le prototype se retrouve peuvent affecter la navigation de
plusieurs fagons. Les capteurs présents sur le prototype et qui contribuent a la navigation ont
des limitations au niveau des conditions des eaux et de la localisation. Ces conditions peuvent

varier, de la profondeur des milieux, la propreté de I’eau, la forme du fond, des piscines a
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I’intérieur, la température et d’autres conditions de plus. Ces limitations peuvent causer des
fausses données des capteurs ou des erreurs de transmission de données. Donc, la localisation
est un ¢élément a analyser avant une opération pour obtenir les meilleures performances ou d’ou

moins comprendre 1’impact que celui-la possede sur les prototypes.

Pour le DVL, les ondes sonores transmises peuvent étre affectées par une concentration
significative de bulles présentes dans 1’eau causée par des grand vagues. Ces bulles brisent les
ondes transmises ou, dans les cas ou ces derniers arrivent a pénétrer, modifient leur vitesse
sonore. Ce probléme affecte le facteur d’échelle de l'effet Doppler. De plus, la présence des
algues dans certains milieux aquatiques ne permet pas au DVL de déterminer le fond absolu et
peut causer des mesures de vitesse inexactes. Pour finir, dans les eaux salées, soit une
concentration de plus de 35 ppt, I’absorption des ondes sonores dans I’eau augmente et réduit
la capacité d’altitude du DVL. Donc, le prototype ne pourrait pas opérer a certaines

profondeurs dépendant de la salinité (Teledyne marine, [s d]).

Pour 'IMU, le magnétométre interne est capable de détecter non seulement le champ
magnétique terrestre, mais aussi les champs magnétiques générés par des objets autour. En
fonctionnement normal, ’'IMU s’appuie sur le champ terrestre pour déterminer le cap.
Cependant, des perturbations magnétiques peuvent survenir et affecter la précision des
mesures. Dans le contexte de prototypes aquatiques, les grandes infrastructures représentent
des sources potentielles de perturbations. En effet, pendant les opérations dans les piscines
intérieures, il est possible de noter des perturbations magnétiques parce que ces derniers sont
dans de grandes infrastructures, habituellement métalliques, et qui possedent beaucoup
d’équipement électrique. Le manuel du modele de I’IMU utilisé, Vectornav VN-100, indique
trois modes de gestion du cap permettant de réduire 1’effet des perturbations et minimiser les
erreurs dans les données. Il s’agit d’utiliser le cap absolu lorsque le champ magnétique mesuré

est presque enticrement le champ terrestre, utiliser le cap relatif lorsque le cap absolu devient
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peu fiable en raison des perturbations et utiliser le cap intérieur dans les environnements
fortement perturbés comme les piscines intérieures. Ces trois modes permettent a I’IMU de

fournir des données fiables en fonction de I’environnement d’opérationnel (VectorNav, [s d]).






CHAPITRE 3
METHODOLOGIE DE TEST

3.1 Types de tests

3.1.1 Test a sec

Les tests a sec sont essentiels, car ils permettent de récolter des données sans avoir acces a une
piscine. En effet, la location d’un bassin suffisamment grand et profond pour les tests est
couteuse. De plus, il faut planifier plusieurs jours a I’avance afin que le bassin soit libre et aussi

que suffisamment de membres de S.O.N.L.A. soient disponibles afin de rendre le test possible.

Ces tests permettent d’obtenir toutes les données reliées au VSLAM ainsi qu’a I'IMU.
Cependant, le DVL ne fonctionne que dans 1’eau, il est donc impossible d’avoir des données
de vitesse, et puisque le contrdle actuel se base uniquement sur la vitesse mesurée par le DVL
pour calculer la position, ces données ne sont également pas disponibles. Il est aussi impossible

de vérifier la stabilité du sous-marin puisque celui-ci est incapable de se déplacer hors de 1’eau.

Afin de réaliser ces tests, le sous-marin est placé sur un chariot avec tout le matériel nécessaire
a son fonctionnement, comme la Duckbox et la Chickenbox. Le chariot est ensuite déplacé a
la main en suivant un itinéraire prédéterminé et les données sont enregistrées dans un ou

plusieurs ROS Bag.

3.1.2 Test en piscine

Les tests en piscines permettent de confronter directement la problématique, de recueillir les
données de dérive et de valider I’implémentation de VSLAM dans le systeme de controle dans
le but de corriger la dérive. Comme le prototype est congu pour le milieu aquatique, les

conclusions seront plus basées sur les tests en piscines. Contrairement au test a sec, tous les
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capteurs sont fonctionnels, incluant le DVL. Le systéme de controle est donc trés utilisé
pendant ces tests afin d’analyser le comportement du prototype et d’évaluer la performance de
la navigation lors de I’intégration du VSLAM. Les données enregistrées pendant ces tests sont
celles de ’ancien et nouveau systéme pour pouvoir effectuer une comparaison. Ces tests
permettent aussi de vérifier les conditions requises pour confirmer la validité de VSLAM dans
I’eau puisque la vision de la caméra stéréoscopique est affectée par 1’eau ainsi que par les
variations de luminosité, ce qui cause des erreurs comme la distorsion des images. Cependant,
pour la réalisation des tests avec le prototype principal AUVS.1, certaines contraintes doivent
étre respectées concernant le type de piscine utilisé. La qualité de la piscine influence fortement
les performances du DVL sur le prototype, un capteur congu pour opérer en milieu océanique.
Les piscines idéales sont celles creusées avec un fond en béton, qui offrent des surfaces dures
et stables permettant une propagation adéquate des ondes acoustiques. A I’inverse, les piscines
hors terre ou celle dont les parois contiennent un revétement mou sont a éviter. Dans ces
environnements, les ondes sonores émises par le DVL sont perturbées, ce qui dégrade
significativement la qualité des mesures et peut rendre le prototype instable. Pour le prototype
LITE1, I’absence de DVL ¢élimine cette contrainte : les piscines hors terre ou a parois souples
peuvent donc étre utilisées sans impact majeur sur la performance. Cependant, lorsque des tests
doivent étre réalisés simultanément ou comparativement avec les deux prototypes, il est

nécessaire d’utiliser une piscine répondant aux exigences du AUVS.1.

3.2 Procédure de test

Lors des tests, les données sont enregistrées a I’aide du systéme d’enregistrement de ROS2,
les ROS Bags. Ce sont des fichiers sur lesquels sont enregistrées toutes les données envoyées
sur les topics choisis. Ces fichiers peuvent ensuite étre rejoués afin d’extraire les données
voulues dans des fichiers CSV qui sont ensuite intégrées dans des tableaux Excel pour étre
analysées. De plus, les tests ont été filmés afin de permettre une comparaison entre les résultats

des Bags et la réalité.



CHAPITRE 4
SLAM

4.1 Définition et types

SLAM - Simultaneous Localization And Mapping

Dans le monde actuel de la robotique, les systémes dotés de capacités de navigation autonome
gagnent en popularité. L’une des exigences essentielles pour les robots autonomes est la
capacité de naviguer dans un environnement inconnu tout en évitant les obstacles et en
atteignant leur destination en toute sécurité (Qiao, Guo, & Li, 2024). Bien que ce soit un vaste
sujet, c’est I’aspect de la navigation qui suscite ici I’intérét. La localisation et la cartographie
sont les éléments clés qui permettent aux robots de comprendre leur environnement et de
connaitre leur propre position (Qiao, Guo, & Li, 2024). L algorithme SLAM est une approche
largement utilisée pour construire une carte d’un environnement et estimer la position du robot
a I’intérieur de celui-ci (Qiao, Guo, & Li, 2024) (Das, 2020) (Yan, Guorong, Shenghua, &
Lian, 2009).

Les algorithmes de SLAM se composent généralement de deux éléments : la cartographie et la
localisation. Le composant de cartographie construit une carte de I’environnement a partir des
données des capteurs, tandis que le composant de localisation estime la position du robot a
I’intérieur de cet environnement (Qiao, Guo, & Li, 2024). Il existe plusieurs types d’approches
en maticre de localisation, telles que les approches basées sur les filtres, les approches basées
sur les graphes et les filtres a particules. Ces trois types seront explorés plus en détail dans le

présent document.

En lien avec le projet S.O.N.I.A., le cas d’utilisation idéal pour ces implémentations se situe

dans des environnements sans acces GPS et dépourvus de tout contexte environnemental.
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4.1.1 SLAM basé sur les filtres

Les approches basées sur les filtres font référence a I'utilisation des filtres de Kalman (KF).
Un KF est un algorithme mathématique utilisé pour 1’estimation d’état dans les systémes
linéaires. L’algorithme fonctionne en deux étapes : la prédiction et la mise a jour. Durant la
phase de prédiction, le filtre estime le prochain état du systéme a partir des données passées.
La phase de mise a jour corrige ensuite cette estimation a I’aide des nouvelles données fournies
par les capteurs. Ce processus est récursif et s’exécute de manicre continue (Das, 2020). Une
version de ce filtre exploite le filtre de Kalman étendu (EKF), qui excelle dans les estimations
linéaires appliquées a des systemes non linéaires (Yan, Guorong, Shenghua, & Lian, 2009). Le
filtre utilisant I’EKF est également appelé un programme a covariance compléte, car il emploie
un vecteur d’état augmenté et une matrice de covariance pour déterminer les corrélations entre
les états et leurs caractéristiques. Le compromis de I’utilisation d’'un EKF ou de filtres
similaires réside dans le fait que leur conception d’estimation linéaire les rend adaptés
uniquement aux systémes faiblement non linéaires. La marge d’erreur augmente de fagon
exponentielle dans le cas de systémes fortement non linéaires. Malgré ce compromis, cet

algorithme demeure largement utilisé (Yan, Guorong, Shenghua, & Lian, 2009).

I1 est important de mentionner que, dans la plupart des cas généraux — particulierement dans
le cadre du projet AUV de S.O.N.ILA. — le probléme a traiter est non linéaire. Cela découle
du fait que AUV opére avec six degrés de liberté¢ (6-DOF) et qu’il navigue en milieu
aquatique. Lorsqu’on travaille sur un plan 2D, il est possible d’approximer la linéarité.
Malheureusement, puisque I’AUV évolue dans I’eau, il est impossible de garantir des
mouvements strictement bidimensionnels. De plus, en raison de I’absence de GPS, il n’existe

aucune référence externe.

Un exemple d’algorithme, le MSCKEF, illustre comment un SLAM basé sur les filtres peut étre
mis en ceuvre pour des systemes non linéaires, tout en intégrant potentiellement une

composante visuelle (Mourikis & Roumeliotis, 2007). Bien que ce systéme soit performant,
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I’aspect visuel présente des limites dans des environnements instables, notamment a cause des
variations d’intensité¢ lumineuse. La solution efficace consiste a intégrer un capteur visuel-
inertiel, c’est-a-dire une caméra stéréo combinée a une IMU. Ce type de capteur permet de
rendre la composante visuelle de 1’algorithme SLAM beaucoup plus stable, améliorant ainsi la

qualité des résultats (Qiao, Guo, & Li, 2024)

Les deux principales limites des algorithmes SLAM basé sur les filtres sont : le coft
computationnel et la forte incertitude due au biais des capteurs. Concernant le coit
computationnel, on peut estimer la complexité¢ du EKF-SLAM a O(N?), ou N représente le
nombre d’observations. La forte incertitude provient du fait que toutes les estimations
dépendent de la précision des capteurs utilisés. En tenant compte du biais inhérent que peuvent
présenter ces capteurs, on risque d’obtenir un biais final exponentiellement amplifié, puisqu’il
se cumule sur I’ensemble des capteurs employés (Yan, Guorong, Shenghua, & Lian, 2009).
Cet aspect d’incertitude élevée peut toutefois étre réduit par une calibration rigoureuse et
I’utilisation de techniques de vision odométrique (Visual Odometry) permettant d’obtenir un

référentiel local plus stable (Qiao, Guo, & Li, 2024).

4.1.2 SLAM basé sur les filtres a particules

L’approche basée sur les filtres a particules repose sur une hypothese de base selon laquelle
le modele de prédiction est erroné. Les filtres a particules adoptent une approche probabiliste
pour déterminer la localisation, en intégrant des modeles imparfaits et des capteurs imparfaits
au moyen de lois probabilistes telles que la régle de Bayes. En tant qu’une des approches les
plus anciennes en matieére de localisation, elle a contribué de maniére importante a faire
progresser la résolution du probléme SLAM. En particulier, elle a permis de traiter le probleme
du robot kidnappé, ou le robot doit retrouver sa position dans un contexte d’incertitude globale
(Thrun, 2002). Bien que cela puisse sembler impressionnant, cette approche présente une limite
importante : I’environnement est supposé entierement connu (c’est-a-dire qu’une carte est déja

donnée). De plus, elle est toujours « fausse » dans la mesure ou elle repose sur des modeles
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probabilistes supposés erronés des le départ. Ainsi, elle est excellente pour 1’approximation et

la prédiction, mais peu fiable pour la certitude absolue.

Un algorithme emblématique utilisant les filtres a particules est FastSLAM, dont le nom est
assez explicite. La complexité de calcul de cet algorithme est la plus faible parmi ceux
mentionnés dans ce document, soit O(M log n), ou M représente le nombre de particules et n
le nombre de reperes (Thrun, 2002). Dans le cas d’utilisation du projet, M croit généralement
avec n, de sorte que la complexité peut étre réécrite sous la forme O(n log n) (Thrun, 2002)
(Hanenko, Storchak, Shlianchak, Vorohob, & Pitaichuk, 2025). Il convient ¢galement de noter
que cette méthode est affectée par la dimensionnalité : elle a du mal a traiter les problémes a
haute dimension, en raison du nombre de particules qui augmente de fagon exponentielle pour
représenter correctement un état (Thrun, 2002). Le projet S.O.N.L.A. est considéré comme un

systéme a haute dimensionnalité avec ses 13 états.

Contrairement au SLAM basé sur les filtres de Kalman, cette approche peut étre modulaire.
L’algorithme SLAM peut étre divisé en deux parties : le front-end et le back-end. Le front-end
consiste a collecter les données des capteurs (extraction de caractéristiques) et a établir les
associations de données entre les différentes observations (suivi de caractéristiques a court
terme, bouclage a long terme). Le back-end, quant a lui, traite les observations associées pour
générer les corrélations nécessaires a la cartographie et a la localisation (Cadena et al., 2016).
Les algorithmes de particules modernes, tels que FastSLAM, tirent parti de cette structure
modulaire en utilisant des filtres EKF dans le front-end, afin d’améliorer la précision des
estimations. Cette approche permet également de reconstruire I’environnement de maniére plus

efficace (Thrun, 2002).

4.1.3 SLAM basé sur les graphes

L’approche basée sur les graphes consiste en la « [construction d’un] graphe dont les noeuds

représentent les poses du robot ou des repéres, et dans lequel une aréte entre deux nceuds
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encode une mesure de capteur qui contraint les poses connectées » (Grisetti, Kiimmerle,
Stachniss, & Burgard, 2010). Le cceur du probléme consiste a trouver une configuration des
nceuds la plus cohérente possible avec les mesures, ce qui revient a résoudre un grand probléme
de minimisation d’erreur (Grisetti, Kiimmerle, Stachniss, & Burgard, 2010). A I’instar des
filtres a particules, cette approche tire ¢galement parti de la séparation entre le front-end et le
back-end du SLAM. Cette distinction est particuliérement importante ici, car le SLAM basé
sur les graphes se concentre principalement sur la partie back-end du processus (Grisetti,

Kiimmerle, Stachniss, & Burgard, 2010).

Un avantage majeur de cet algorithme est qu’il est congu pour s’appuyer entiérement sur
I’environnement observé et qu’il fonctionne efficacement dans des systémes non linéaires. Le
compromis réside dans le fait qu’il s’agit de 1’algorithme ayant la complexité la plus élevée
parmi toutes les approches SLAM mentionnées, soit O(n*) (Hanenko, Storchak, Shlianchak,
Vorohob, & 11 Pitaichuk, 2025). Bien que cette complexité soit importante, la précision
temporelle du systéme est également ['une des meilleures, car une fois I’origine du graphe
définie, toutes les références qui y sont reliées deviennent extrémement précises (Durrant-
Whyte & Bailey, 2006). Un facteur clé contribuant a cette précision est 1’étape de fermeture
de boucle (loop closure), absente des approches basées sur les filtres. La fermeture de boucle
fait référence a la capacité de 1’algorithme a reconnaitre un repere déja visité, méme si celui-
ci n’apparait pas exactement dans la méme position qu’auparavant. Cela permet a I’algorithme
d’optimiser I’ensemble du graphe afin que les nouvelles informations demeurent cohérentes

avec les données existantes (Hanenko, Storchak, Shlianchak, Vorohob, & Pitaichuk, 2025).

Un exemple bien connu de cette implémentation est ORB-SLAM, qui intégre des techniques
de vision odométrique (Visual Odometry) ainsi que des capteurs visio-inertiels (Visual-Inertial

Sensors) (Grisetti, Kiimmerle, Stachniss, & Burgard, 2010).
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4.2 Comparaison et solution potentielle

Lors de I’analyse de ces méthodes, plusieurs points de comparaison peuvent étre relevés,
comme le mentionnent (Hanenko, Storchak, Shlianchak, Vorohob, & Pitaichuk, 2025). En
comparant le SLAM basé sur les filtres, le SLAM a particules et le SLAM basé sur les graphes,
on observe divers compromis. Dans tous les cas, le EKF-SLAM fonctionne mieux pour des
systémes linéaires avec un bruit gaussien, mais cette situation est rarement (voire jamais)
rencontrée en pratique. Méme dans ce cas, le EKF-SLAM demeure généralement le meilleur
choix pour les systemes de petite échelle, en raison de son faible colit computationnel.
Toutefois, a mesure que le systeme grandit, il devient moins efficace que les autres options.
Pour les systémes de grande échelle, les approches basées sur les graphes (Hanenko, Storchak,
Shlianchak, Vorohob, & Pitaichuk, 2025) et celles a particules offrent de meilleures
performances en termes de précision (Hanenko, Storchak, Shlianchak, Vorohob, & Pitaichuk,

2025) (Das, 2020).

En observant I’échelle et la complexité des systémes, le SLAM basé sur les filtres tend a mieux
fonctionner au départ, mais perd rapidement en efficacité a mesure que la complexité des
calculs et la taille du modele augmentent. Les approches basées sur les graphes et a particules
sont beaucoup mieux adaptées aux systemes a grande échelle. Bien que les filtres a particules
soient techniquement plus rapides, avec une complexité d’O(n log n), leur précision demeure
inférieure a celle du SLAM basé sur les graphes. C’est a ce stade que les avantages et les
compromis entre les différentes approches deviennent apparents. Comme la majorité des
systtmes modernes sont de grande taille et que 1’objectif principal est la précision, la
combinaison EKF + SLAM bas¢ sur les graphes tend a étre ’approche privilégiée dans la

plupart des cas d’utilisation.

Le systéme idéal, sans limites de puissance de calcul ni de mémoire, combinerait les trois
approches. 1l utiliserait des filtres EKF dans le front-end du SLAM — ce que font déja
ORBSLAM et FastSLAM — et une combinaison de SLAM basé sur les graphes et de SLAM
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a particules dans le back-end. L’1dée serait d’employer un EKF pour fusionner les données
capteurs et effectuer I’association de données, de laisser le SLAM basé sur les graphes,
cartographier les environnements inconnus et suivre les repéres, et d’utiliser le SLAM a
particules dans les environnements connus afin de filtrer la précision des prédictions, tout en

revenant au graphe en cas d’incertitude.

En ce qui concerne le projet S.O.N.I.A., la meilleure approche, compte tenu des informations
disponibles et des contraintes de ressources, serait d’utiliser une solution EKF + graphe. D une
part, comme un EKF fait déja partie du systéme de contrdle, il n’est pas nécessaire d’en
concevoir un nouveau. D’autre part, le choix du SLAM basé sur les graphes s’explique par la
volonté de réduire la dérive au fil du temps, rendant ainsi la précision des données absolument

essentielles.

Il n’est pas possible de développer une solution personnalisée dans les limites de temps et de
ressources imposées au projet, et il est donc nécessaire de recourir a des cadres existants.
L’objectif est de se rapprocher du meilleur scénario théorique décrit précédemment. La
premicre option est ORB-SLAM3, particulierement intéressant pour ses aspects visuo-inertiels
et sa réputation dans I’industrie (Campos, Elvira, Rodriguez, Montiel, & Tardés, 2021).
Ensuite, Nav2 est une option intéressante grace a son intégration directe avec ROS2 (« Nav2
— Nav2 1.0.0 documentation », s.d.). Enfin, NVIDIA ISAAC_VISUAL SLAM est congu
pour fonctionner sur le GPU plutdt que sur le CPU, ce qui est avantageux puisque les
prototypes utilisent des ordinateurs de bord NVIDIA (« Isaac ROS Visual SLAM —
isaac_ros_docs documentation », s.d.). D’autres solutions pertinentes sont mentionnées dans
(Merzlyakov & Macenski, 2021), notamment OpenVSLAM, qui présente également un certain
intéreét.

Cependant, bien que Nav2 soit convivial et facile a intégrer, il ne correspond pas au cas
d’utilisation pour deux raisons principales : premicerement, il est congu pour des

environnements 2D (« Nav2 — Nav2 1.0.0 documentation », s.d.) ; deuxiémement, il repose
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sur un SLAM purement basé sur I’EKF pour la localisation (« robot localization wiki —
robot localization 2.7.7 documentation », s.d.), alors qu’ORB-SLAM3 et Isaac Visual SLAM
sont basés sur les graphes. Bien que ces deux derniers soient comparables, une étude menée
par NVIDIA démontre qu’lsaac est 1égerement supérieur sur les systtmes NVIDIA (« Isaac
ROS Visual SLAM — isaac_ros_docs documentation », s.d.). De plus, méme si ORB-SLAM3
dispose d’une implémentation ROS2, il n’a pas été testé¢ sur ROS2 Humble, la version utilisée
par le projet (Jung, 4 aott 2022/2025). Le méme argument s’applique a OpenVSLAM, dont la
compatibilit¢ avec ROS2 n’a pas encore été solidement démontrée (« ROS Package —
OpenVSLAM documentation », s.d.). Ainsi, la solution optimale serait d’utiliser Isaac Visual
SLAM, car il existe de solides preuves de compatibilité et une intégration fluide avec

I’infrastructure déja en place.

4.3 Impact sur le systéme actuel

L’intégration de I’algorithme de VSLAM n’a pas démontré d’impact visible sur le systéme de
I’AUVS.1 parce que ce dernier répond aux exigences minimales de la libraire de
NVIDIA ISAAC VISUAL SLAM. En effet, apres avoir effectué I’implémentation et des
phases de tests, aucun impact négatif n’a été remarqué sur le systeme. Cependant, il serait
intéressant d’observer la réaction du systéme si I’algorithme tournait en paralleéle avec un
modele d’TA nécessaire aux opérations du prototype lors de la compétition, €tant donné que
les deux utilisent la carte graphique du systeme. Ce test, qui a pour but d’analyser les limites
de ’'usage de 1’algorithme en parallele avec d’autres ressources du systéme, n'a pas été réalisé
parce qu’il n'était pas possible d’obtenir une phase de test avec un modele d’IA pendant la

réalisation du projet.

4.4 Critére d’analyse

Les critéres qui vont permettre de confirmer la conformité de 1’algorithme reposent sur la

fiabilité de I’odométrie fournie par VSLAM ainsi que la précision du nuage des points généré
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a partir des images de la caméra. Le premier critére permet d’évaluer dans quelle mesure
I’implémentation de cet algorithme améliore 1’état actuel du systéme. En effet, si I’odométrie
produite par I’algorithme n’est pas suffisamment fiable, il devient peu pertinent de considérer

VSLAM comme une solution efficace pour la correction de la dérive.

Par ailleurs, si le nuage de points, par rapport au sous-marin, n’est pas bien défini, ¢’est-a-dire
si les corrections des points résultant de la fermeture de boucle sont de faible qualité. Alors,
VSLAM ne fonctionne pas de fagon optimale. Cette dégradation peut étre causée, entre autres,

par une qualité insuffisante des images ou des mauvaises conditions environnementales.

4.5 Données en entrée

4.5.1 Cameéra stéréo

Les lentilles droite et gauche fournissent des paires d’images permettant d’identifier des points
clés correspondants. De plus, grace a la capacité de la caméra stéréo a fournir des informations
de profondeur, il est possible d’estimer la distance entre la source et chaque point clé, ce qui
permet ensuite de déterminer la position de ce point dans un espace 2D ou 3D. L’ensemble de
ces points clés constitue la cartographie et permet de localiser le prototype dans son

environnement. (MathWorks, [s d] ; NVIDIA Isaac ROS, [s d])

4.5.2 IMU

Le systéme SLAM peut fonctionner enti¢rement a partir des caméras stéréo, en s’appuyant sur
I’odométrie visuelle (VO) générée par le flux vidéo des lentilles droite et gauche. Cependant,
dans les conditions ou ces données ne sont pas suffisamment précises pour estimer la pose,

comme en cas de distorsions d’image, de mauvaise luminosité ou de surfaces aux propriétés
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optiques défavorables, les données issues de I’IMU permettent d’obtenir une estimation de

pose plus précise et plus stable. (MathWorks, [s d] ; NVIDIA Isaac ROS, [s d])

4.6 Données en sortie

A partir des entrées, ’algorithme de VSLAM est capable de produire une estimation

d’odométrie et une représentation de I’environnement par des points en 3D autour de la caméra.

4.6.1 Odométrie visuelle

L’odométrie visuelle est le résultat de ’analyse des entrées de I’algorithme de VSLAM : les
images des caméras et les données de I’IMU. L’algorithme utilise une libraire cuVSLAM de
NVIDIA pour traiter les images stéréo directement sur le GPU du systéeme. Le cuVSLAM
détecte des points distinctifs dans les images pour générer des points correspondants dans
I’espace 3D. Ces points visuels sont intégrés dans une carte interne qui permet d’estimer le
mouvement dans I’espace de la caméra dans 1’espace. Concrétement, il calcule le mouvement
en comparant les points qu’il a déja observés avec ceux détectés en temps réel. L ensemble de
ces étapes permet de produire 1’odométrie visuelle qui fournit la position et I’orientation de

I’observateur par rapport a son environnement (Anon, [s d]).

4.6.2 Nuage de points

Le nuage de points représente une disposition des points générée par l’algorithme. La
distribution de points refléte la structure de I’environnement observé par la caméra, chaque
point étant défini par des coordonnées en trois dimensions. Figure 3 illustre un exemple de
propagation des points dans I’espace de I’atelier du club S.O.N.I.A, tel que montré dans la
Figure 4. Les points en blanc représentent un historique des points déja observé par

I’algorithme tandis que les points rouges indiquent la fermeture de boucle (loop closure).
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La fermeture de boucle arrive lorsque la caméra revient dans un environnement déja visité et
reconnait les points déja existants dans la carte. Lorsque ce processus survient, le cuVSLAM
corrige les erreurs accumulées au cours de 1’odométrie visuelle et réajuste la position de
certains points récents en fonction des points précédemment observés. Ce processus améliore

la cohérence de la carte et permet d’obtenir une trajectoire globale plus précise.

Figure 3 Point cloud de l'espace des ateliers

Figure 4 Vue de !'intérieur de l'atelier du club de S.O.N.IA.






CHAPITRE 5
SYSTEME DE CONTROLE

5.1 Définition

Le systéme de contréle du sous-marin comprend un filtre de karman étendu (EKF) et un MPC
adaptatif. La combinaison des deux approches est congue pour des systémes non linéaires et
qui sont soumis aux variations et perturbations de I’environnement. Avec un tel systéme, le
sous-marin est capable d’évoluer dans les 6 dégrées de liberté, définis par la position et
I’orientation. Le contrdle repose sur un estimateur d’état généré par la fusion de capteurs de
pression, d’IMU et du DVL du sous-marin dans I’EKF. En tenant compte du centre de gravité
du sous-marin, le MPC utilise ensuite 1’état estimé pour calculer et envoyer les PWM aux huit

moteurs pour orienter et positionner le sous-marin vers 1’état désiré.

5.2 Implémentation actuelle de proc_nav (EKF)

Pour I’'implémentation actuelle de proc nav, celui-ci posséde comme sortie treize états du
sous-marin : trois positions, quatre orientations dans un quaternion, trois vitesses linéaires et
trois vitesses angulaires. Ces états proviennent des trois capteurs du sous-marin, comme
montré dans le Tableau 1, et sont envoyés au MPC. Ce dernier traite les états regus pour,
ensuite, envoyer des signaux aux moteurs pour le déplacement a effectuer et retourner les
forces en newtons des moteurs au proc_nav pour la prochaine itération. Le présent projet
permet d’analyser trois cas d’utilisation distincts grace a ’intégration de nouveaux concepts et

€quipements, notamment 1’algorithme VSLAM :

1. Un cas d’utilisation IMU + DVL : VectorNav VN-100 avec le DVL Pathfinder de
Teledyne.
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2. Un cas d’utilisation IMU + IMU : VectorNav VN-100 combiné avec I’IMU intégré
a la caméra stéréoscopique.

3. Un cas d’utilisation IMU + IMU + DVL : les deux IMUs ainsi que le DVL.

Tableau 1: Les types d'états du filtre de Kalman

Type d’état Source(s)
Orientation IMU
Position Capteur de pression, Calculé
Vitesse linéaire DVL
Vitesse angulaire IMU

Dans le systeme de controle, il y a trois parties concernant 1’obtention des treize états, comme
montré dans la Figure 5 : il y a le prétraitement des mesures venant des capteurs, le filtre de
Kalman étendu et le rassemblement des données d’états dans un objet bus de Simulink. En ce
qui concerne les états, le systéme se fie entierement sur 1’orientation provenant de I’'IMU pour
sa précision importante grace au magnétometre. Cependant, I’orientation en z peut acquérir de
la dérive dépendamment des conditions de I’environnement. Pour la position, le systeme
favorise le capteur de pression pour les déplacements dans 1’axe de z et, pour les deux autres,
ils sont déterminés en effectuant des calculs d’intégrale des vitesses linéaires sur les trois axes

mesurés par le DVL.
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Figure 5 Présentation des entrées du proc_nav dans Simulink

Cas d’utilisation IMU + DVL

Le principe le de ce cas d’utilisation, qui est le cas d’utilisation actuel pour I’AUVS.1, est de

montrer une importance significative envers les mesures des capteurs IMU et DVL dans ’EFK

parce que ces derniers sont les sources d’une bonne partie des treize états du sous-marin sortie

par I’EFK. Cette approche est sur lequel le systéme initial a été congu pour et il est fiable en

temps d’opérations normal, d’oul moins pour la compétition auquel le sous-marin participe.
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5.2.2 Cas d’utilisation IMU + IMU

Le cas d’utilisation IMU + IMU représente une nouvelle approche intéressante pour le systéme.
I a été introduit apres I’acquisition de caméras stéréoscopiques de Stereolabs : la ZED Mini
pour I’AUVS.1 et la ZED2i pour le LITEI. Les deux caméras possédent des IMUs intégrés
dont le systéeme de contrdle pourrait bénéficier. Elles offrent une source supplémentaire pour
les états mesurés par I'IMU principale, permettant ainsi d’améliorer la précision et,
indirectement, la performance globale du systéme. Ce cas d’utilisation vise a démontrer le
fonctionnement du systeme de controle en absence du DVL a cause des deux raisons
suivantes : la fréquence de données provenant du DVL n’est pas consistante et le nouveau
prototype, le LITEl, ne posséde pas de DVL. Donc, la source des vitesses linéaires
proviendrait des accélérations linéaires fournies par les deux IMUs, plutdt que par le DVL, en
effectuant un calcul d’intégration sur les mesures de I’accélérometre du capteur et une double

intégration pour en déduire la position par rapport au temps.

5.2.3 Cas d’utilisation IMU + IMU + DVL

Ce cas d’utilisation est la combinaison des deux cas d’utilisation en utilisant les 3 capteurs
rigoureusement dans le filtre de Kalman étendu. C’est une approche seulement possible avec
I’AUVS.1 parce qu’il possede les trois composants nécessaires. Elle est intéressante comme
approche parce que, en théorie, la possibilité¢ d’avoir des redondances dans le systéme rendrait
le systéme de controle beaucoup plus robuste que le systeme actuel. En effet, comparé aux
sources des mesures définies dans le Tableau 1, I’implémentation suivante vient ajouter une

source additionnelle de données pour chaque type d’état du sous-marin.
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53 Implémentation actuelle de proc_control (MPC)

Actuellement, le contrdle recoit en entrée 13 états qui correspondent a un objectif a atteindre.
Cet état est généré par un autre programme qui est responsable de diviser chaque mouvement
en plusieurs mouvements plus courts afin de tracer une trajectoire. Ce sont ces plus petits
déplacements qui sont ensuite envoyés au controle. Une fois que I’EKF a calculé les 13 états
actuels, ceux-ci sont envoyés au MPC. Celui-ci compare ensuite ces données a 1’objectif, puis
calcule les prochains déplacements nécessaires pour atteindre 1’objectif. Le MPC prend
¢galement en entrée les constantes physiques du sous-marin, comme la position des moteurs,
le centre de masse et de poussée et I’inertie entre autres. Ces constantes sont utilisées afin de
prédire la réaction du sous-marin afin de prédire les déplacements futurs. Les forces que doit
appliquer chaque moteur sont également calculées, puis transformées en signal a envoyer aux
moteurs. Les forces calculées sont également renvoyées au EKF afin qu’elles soient incluses

dans le prochain calcul des états actuels.

5.4 Intégration idéale du VSLAM dans ’EKF

5.4.1 Données idéales du VSLAM

Idéalement, 1’algorithme VSLAM fonctionne parfaitement et retourne les 13 états du controle
avec une tres grande précision et aucune erreur. Ces données peuvent donc directement étre
utilisées dans le filtre de Kalman étendu avec des covariances tres faibles, car elles seraient
plus précises que les capteurs actuels. Les données les plus importantes sont la position en X
et Y ainsi que la rotation en Z, car c’est sur ces €tats que la dérive est présente. Avec un
VSLAM idéal, ces données seraient corrigées, car I’algorithme fourni des données de position

et d’orientation qui permettent de corriger la dérive déja présente.
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5.4.2 Modifications idéales de ’EKF pour intégrer le VSLAM

Avec un algorithme VSLAM idéal, I’intégration dans le filtre de Kalman étendu est trés simple.
11 faut simplement ajouter les 13 états retournés par VSLAM dans une entrée de I’EKF apres

avoir ajuste le référentiel de la caméra afin que les résultats soient sur le référentiel du controle.

Pour cela, il faut d’abord ajuster les données de position en soustrayant les coordonnées de la
caméra par rapport au centre du sous-marin aux données du VSLAM apres avoir appliqué la
rotation retournée aux coordonnées. Puisque le référentiel du VSLAM place 1’axe Z vers le
haut, il faut également inverser les rotations sur les axes Z et Y. Cela est fait en multipliant les
valeurs associées du quaternion par -1. Pour les vitesses linéaires, en plus d’appliquer la méme
rotation, il faut également retirer les vitesses linéaires qui sont générées par les rotations et
I’effet de levier a cause de la distance au centre du sous-marin. Ces vitesses sont calculées en
fonction des vitesses de rotation autour des axes ainsi que des coordonnées de la caméra par
rapport au centre du sous-marin. Les vitesses de rotation doivent uniquement étre inversées en

Y et en Z afin d’utiliser le référentiel du contrdle.
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Figure 6 Implémentation de l'ajustement du référentiel

Puisque les données de I’algorithme seraient parfaites, les covariances associées seraient trés

basses afin qu’elles aient un grand impact sur la sortie de I’EKF.
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5.4.3 Coiit des modifications idéales

Les couts d’une telle intégration sont tres faibles, puisque le systtme EKF-MPC est déja en
place. L’ajout des données du VSLAM dans le filtre de Kalman étendu est trés simple et
puisque les données sont parfaites, les covariances peuvent étre trés basses sans avoir besoin

de faire plusieurs tests afin de déterminer les bonnes valeurs.

5.5 Intégration réaliste du VSLAM dans ’EKF

5.5.1 Données réelles sélectionnées du VSLAM

En réalité, les données provenant du VSLAM ne peuvent pas étre considérées comme parfaites.
En effet, I’algorithme se base sur les changements détectés par la caméra. Dans des conditions
réelles, il est possible qu’aucun changement significatif ne soit enregistré par le VSLAM, ce

qui entraine des erreurs dans les données envoyées au filtre de Kalman.

5.5.2 Changement réaliste de ’EKF pour intégrer le VSLAM

Intégration réaliste est trés proche de I’intégration idéale, puisqu’il suffit également d’ajouter
les données du VSLAM en entrée au EKF aprés avoir ajusté le référentiel. Cependant, puisque
les données sont imparfaites, les covariances doivent étre ajustées afin de prendre en compte
I’imprécision de chacun des 13 états qui sont renvoyes par 1’algorithme. L’ajustement de ces
covariances est difficile, car il n’est pas possible d’obtenir une valeur de fagon mathématique.
La meilleure fagcon de faire consiste a essayer différentes valeurs afin de trouver celles qui

donnent les meilleurs résultats.

5.5.3 Risques possibles et calibrations nécessaires

Ces essais peuvent étre longue et 1’acces a une piscine étant difficile, il est possible que le

temps de test disponible ne soit pas suffisant pour déterminer les meilleures covariances
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possibles. Il faut aussi potentiellement calibrer le VSLAM dépendant des performances
observées. Ces ajustements prennent également du précieux temps de test, il faut donc limiter

le plus possible les pertes de temps.

5.6 Impacts sur le MPC

Ce projet n’a aucun impact sur la partie MPC du contrdle. En effet, seul le filtre de Kalman est
impacté. Apres que celui-ci a calculé les 13 états actuels, ceux-ci sont envoyés au MPC afin
de calculer les déplacements futurs. Puisque les données du VSLAM vont dans I’EKF, elles

ont uniquement un impact sur le calcul de I’état actuel, ce qui n’impacte aucunement le MPC.

5.7 Impacts attendus sur la dérive

Puisque 1’algorithme VSLAM retourne les 13 états du contrdle, toutes les valeurs de celui-ci
devraient étre corrigées en cas de dérive. En supposant que VSLAM soit en mesure de suivre
les déplacements et les rotations du sous-marin, toute la dérive générée par les pertes de
données du DVL sera corrigée par les données de vitesse linéaire et de position de VSLAM et

la dérive causée par I’IMU sera corrigée par la rotation fournie par I’algorithme.



CHAPITRE 6
RESULTATS

6.1 Tests a sec
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Figure 7 Position du sous-marin vue du dessus lors du test a sec 1
La premiére Figure 7 montre la position retournée par les deux sorties du VSLAM, vis_slam
et tracking_slam, ainsi que la position calculée par le controle auv_states durant le premier test
a sec. Le mouvement effectué est un déplacement vers I’avant de 6m, une rotation de 90 degrés
vers la gauche, un mouvement de 8m vers I’avant, une rotation de 180 degrés dans le sens
antihoraire, un autre déplacement de 8m, une rotation vers la droite de 90 degrés, un
mouvement de 6m vers 1’avant et une rotation de 180 degrés dans le sens antihoraire. Les
données montrent que le premier déplacement a bien été mesuré par le VSLAM. La premiere
rotation est visible sur le graphique, mais n’a pas le méme angle que la réalité. Le déplacement

suivant ainsi que le demi-tour et le mouvement vers le point de la premiere rotation sont
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relativement bien mesurés, mais la position du sous-marin est décalée d’environ un meétre par
rapport a la position de la premiére rotation, alors que ce n’est pas le cas en réalité. La rotation
de 90 degrés vers la droite, le mouvement de 6m vers 1’avant ainsi que la rotation finale sont
¢galement bien détectés. Il est important de noter que 1’axe y est inversé, car le référentiel du

sous-marin est inversé. Ceci s’appliquera a plusieurs graphiques dans ce chapitre.

A partir de la premiére rotation, des pics sont visibles dans les données d’auv_states. Ceux-ci
sont causés par un décalage entre 1’orientation de I'IMU et du VSLAM. Puisque les données
du DVL ne sont pas disponibles lors des tests a sec, le calcul de position se base enti¢rement
sur la vitesse calculée par le VSLAM. Cependant, ce calcul s’effectue a plus haute fréquence
que le VSLAM, ce qui oblige le controle a utiliser les derniéres données en attendant les
nouvelles données. Bien que la vitesse vienne uniquement du VSLAM, [’orientation est
¢galement fournie par I’IMU. En absence de données du slam, le contréle se base entiérement
sur ce capteur afin de connaitre son orientation, mais utilise les derniéres données du VSLAM
pour les autres informations, comme la position et la vitesse. Ces pics pointent donc dans la
vraie orientation du sous-marin, puis sont ramenés a la position du VSLAM lorsque de
nouvelles données sont recues. Leur taille et position aléatoire sont dues au fait que ce
phénomene n’arrive que lorsque le VSLAM ne fournit pas d’informations, ce qui est dépendant

des éléments visibles par la caméra.
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Figure 8 Orientation en Z en fonction du temps lors du test a sec 1

La Figure 8 montre I’orientation du sous-marin pendant le test. Au début, toutes les données
sont proches de zéro. A environ 15 secondes, le sous-marin fait une rotation de 90 degrés.
L’IMU ainsi que auv_states mesure correctement celle-ci, puisque les deux se rapprochent de
0.707 qui est la valeur d’une rotation de 90 degrés dans un quaternion. Cependant, le VSLAM
ne mesure pas correctement le changement d’orientation, ce qui cause une différence entre les
deux valeurs. A partic de ce moment, des pics verticaux sont visibles dans les données
d’auv_states. Ceux-ci sont causés par la réception des données du SLAM par le controle.
Celui-ci tente d’inclure ces informations trés différentes dans le calcul de la rotation, mais,
puisque les covariances du VSLAM sont beaucoup plus élevées que celles de I’'IMU, la rotation
retourne rapidement a la valeur de la centrale inertielle. Cela peut également étre vu dans les
données au-dela de 30 secondes. Apres une rotation de 180 degrés, la valeur du VSLAM
devient plus basse et plus proche de celle de 'IMU. Cela a pour effet de réduire la taille des

pics et d’inverser leur sens.
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Figure 9 Position du sous-marin retournée par VSLAM vue du dessus lors du test a sec 2

L’objectif du deuxieme test a sec était d’observer I’impact d’un environnement connu par
rapport a un environnement inconnu. Pour cela, le sous-marin a effectué le méme trajet deux
fois. Celui-ci consistait en un rectangle de 5.5 metres de long sur 2.5 métres de large. Lors du
premier trajet, le sous-marin a tout d’abord été déplacé autour du parcours afin d’avoir un
nuage point initial avant de commencer le trajet. Les résultats montrent que, lors de ce
déplacement, I’algorithme VSLAM a bien réussi a suivre les déplacements du sous-marin avec
peu d’erreurs. Lors du deuxieme trajet, le nuage de point a été réinitialisé juste avant de
commencer le déplacement. Les données montrent que celui-ci n’a pas bien été¢ évalué par le
VSLAM. Les données différent a partir de la premicre rotation et la position finale est a

plusieurs métres de la position initiale.
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6.2 Tests en piscine

Tous les tests en piscine ont été réalis¢ au Complexe aquatique Michel-Leduc (Aquadome).

Figure 10 Piscine de test a Aquadome (https://inscriptionsaquadome.ca/bain-libre)

Le bassin utilisé mesure 25 métres de long sur 12 meétres de large et mesure 3,4 métres de
profondeur avec une pente d’un coté. Lors des tests, le bassin est entierement réservé par
S.O.N.ILA., il n’y a donc personne d’autre dans la piscine. Lorsque le sous-marin est dans I’eau,
il y a toujours un membre du club qui nage a c6té afin de s’assurer qu’il ne rentre pas en

collision avec un mur en cas de probléme.

6.2.1 Sans marqueurs visuels

Tous les résultats présentés dans cette catégorie ont été obtenus lors de tests dans une piscine
vide, c’est-a-dire sans objets supplémentaires dans le bassin. Les seuls éléments visibles lors
de ce test étaient les murs et le fond ainsi que les lignes de natation flottantes a la surface. Ce
manque de marqueurs visuels rend le suivi de la position difficile pour VSLAM, ce qui

explique ’instabilité des résultats.
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Figure 11 Positions retournées par VSLAM avec le sous-marin statique
Le premier test effectué lors du premier essai en piscine fut d’enregistrer les données envoyées
par VSLAM sans qu’il soit connecté au contréle. Deux enregistrements ont été pris, le premier
avec les moteurs éteints et le sous-marin flottant immobile a la surface et le deuxiéme avec les
moteurs actifs et le controle essayant de conserver sa position actuelle. Dans les deux cas,
aucun mouvement significatif n’a été observeé durant les enregistrements. Pourtant, les données
montrent des déplacements chaotiques qui font parfois plusieurs metres de long, ce qui montre
que VSLAM ne semble étre capable de suivre les mouvements du sous-marin. Un nouveau
phénomene qui n’était pas visible dans les tests a sec est aussi trés visible dans ces deux
graphiques : vis_slam et tracking slam ne retournent pas les mémes résultats. Lors des tests a
sec, ces 2 sorties €taient toujours tres proches 1’une de 1’autre, au point que seulement
tracking slam est visible sur les graphiques précédents. Mais dans les données de ce test, il est
tres clair que les deux sorites du VSLAM retournent des résultats completement différents. La
position initiale et finale est différente et il n’y a pas de corrélation entre les mouvements des

2 sorties.
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Figure 12 Position du sous-marin vue du dessus lors du test en piscine 1

Ce graphique présentes les résultats du test en mouvement. Comme pour les données
précédentes, 1I’algorithme VSLAM n’est pas connecté au contrdle, il n’a donc pas d’impact sur
la position du sous-marin. Pour ce test, le sous-marin devait effectuer une spirale avec des
angles de 90 degrés afin d’observer la position enregistrée par le VSLAM lors des
déplacements. Ces mouvements sont bien visibles dans les données d’auv_states, mais comme
lors du test précédent, VSLAM est incapable de suivre les déplacements du sous-marin. Ces
résultats montrent I’importance d’avoir des marqueurs visuels supplémentaires dans la piscine

lors des tests.

6.2.2 Avec des marqueurs visuels

Lors de ces tests, des obstacles ont été ajoutés dans la piscine afin d’améliorer les performances
du VSLAM. Ces obstacles étaient statiques et tres visibles sur les parois de la piscine. Ceux-
ci sont également les obstacles utilisés lors de la compétition a laquelle S.O.N.I.A. participe

chaque année et représente donc bien les conditions réelles d’utilisation.
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Figure 13 Image d'un obstacle dans la piscine prise depuis la caméra du sous-marin
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Figure 14 Orientation en Z en fonction du temps lors du test en piscine 2
Ce graphique présente les données d’orientation du sous-marin sur 1’axe Z. Au départ, lors des
tests, le sous-marin se trouve face a ’obstacle mentionné précédemment. Apres quelques
secondes, il effectue une rotation de 45 degrés sur I’axe Z, ce qui correspond a une valeur de -

0.383 pour I’axe Z du quaternion. Ce mouvement change le champ de vision de la caméra,
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mais 1’obstacle reste visible, ce qui permet a VSLAM de suivre relativement bien la rotation.
Par la suite, le nageur vient perturber le sous-marin en poussant dessus, ce qui vient causer des
rotations involontaires. Celles-ci sont clairement visibles dans les données par les pics qui

apparaissent dans toutes les données.

Bien qu’il y ait clairement une corrélation entre les trois sources de données, une divergence
entre tracking slam et les autres valeurs sont également visibles. Celle-ci commence dés la
premigére rotation du test, mais s’amplifie beaucoup apres les mouvements. Selon les résultats
obtenus, il est rapidement ressenti que vis_slam fournit des données plus précises a court terme
et envoie des informations plus fréquemment que tracking slam. Pour ces raisons, c’est
vis_slam qui a été choisi pour étre intégré dans le controle. C’est pour cette raison que

tracking slam ne sera pas présenté dans les prochains graphiques.
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Rotation == Activation des moteurs

Figure 15 Position en X en fonction du temps pendant le test en piscine 3

Des résultats similaires peuvent €tre observés pour la position sur I’axe X lors du test suivant
qui a eu lieu dans des conditions similaires. Au début de ce test, le sous-marin regarde
I’obstacle présenté plus haut. Dans les 20 premicres secondes, les moteurs ne sont pas actifs et

c’est le nageur qui déplace le sous-marin. A 20 secondes, les moteurs sont allumés et le sous-
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marin se stabilise. Puis, 74 secondes aprés le début du test, le sous-marin fait une rotation de
90 degrés, ce qui fait sortir I’obstacle du champ de vision de la caméra. A partir de ce moment,
des pics sont visibles dans les données d’auv_states, comme pendant le test a sec 1. La cause
est la méme, c’est-a-dire que VSLAM n’a pas mesur¢ correctement la rotation et que la valeur

d’orientation en Z de vis_slam est différente de celle de la centrale inertielle.
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CHAPITRE 7
ANALYSE

7.1 NVIDIA Isaac ROS Visual SLAM
7.1.1 Intégration de I’IMU

Comme mentionné précédemment dans ce rapport, 1’utilisation de la bibliothéque NVIDIA
Isaac ROS Visual SLAM représentait le meilleur scénario pour I’implémentation du VSLAM
dans le cadre de ce projet. Il semble toutefois qu’apres les tests réalisés, ce n’ait pas été le
meilleur choix. La description de configuration indique que I’activation du paramétre
enable_imu_fusion devrait informer la bibliothéque d’utiliser les données de I’'IMU intégré
dans la caméra lors du calcul de I’odométrie en sortie. Toutefois, comme le montre 1’équation
suivante, I’algorithme ne semble pas tenir compte de I’'IMU. Cela modifie fondamentalement
les attentes envers le systéme, puisqu’il repose alors exclusivement sur les données
stéréoscopiques visuelles. Ce point est davantage expliqué dans Korovko et al. (2025), ou

I’équation suivante illustre la maniére dont 1’estimation de pose visuo-inertielle est réalisée :

Si—1,S8; =

1
, 2 . 2
arg min [l |r”"”(.5’i_1,51-)||Z iy + Z|Irrepr(5i_1,5i)||; ss T ||r””°T(SL-_1,Sl-)||Z ,
j=0

Equation 1
Si r'P" = 0, ce qui représenterait une perte du flux visuel, nous devrions alors nous appuyer
uniquement sur les données de I’IMU. En utilisant cette équation, I’algorithme corrigerait les
données d’odométrie afin de minimiser ’erreur détectée par 'IMU selon la matrice de

covariance Xpy. Si I’équation se réduit a n’utiliser que |l "™ (S;_1,S;) II%IMU, I’erreur



52

s'accumule trés rapidement, ce qui amene ’algorithme a ignorer complétement les données et

a cesser de publier.

En fin de compte, 1’algorithme nécessite un flux visuel pour fonctionner, celui-ci servant de
lien entre les poses calculées et le monde réel. Le probléeme fondamental rencontré est

davantage li¢ a la qualité du flux visuel qu’a sa disponibilité.

7.1.2 Tracking ou Vis

Lors de I’utilisation de la bibliothéque NVIDIA Isaac ROS Visual SLAM, la documentation
en ligne pour la version 2.1 ne définit que les topics ROS liés a tracking slam et non ceux liés
a vis_slam. En examinant le code source ainsi que la version la plus récente de la
documentation, il a été déterminé que tous les topics associ€s a vis_slam étaient considérés
comme des topics de visualisation. Cela est suggéré dans la documentation en ligne d’Isaac
ROS cuVSLAM (« cuVSLAM — Isaac ROS », s.d.) et défini de maniere plus explicite dans
(Mur-Artal & Tardos, 2017). Ce comportement correspond bien a celui qui a été observé lors

des tests.
Tracking

Tout ce qui provient du tracking contient les données brutes calculées en arriére-plan du
VSLAM, ce qui inclut la fusion de capteurs et la fermeture de boucle (loop closure). La
principale raison pour laquelle I’information provenant de cette source est lente et semble « en
retard » par rapport au reste est qu'un volume de traitement beaucoup plus important est
nécessaire pour la générer. En fin de compte, ces informations ne sont pas adaptées a ce projet
en raison de leur faible fréquence et, puisqu’elles se corrigent continuellement via la fermeture

de boucle, elles sont sujettes a des sauts dans les données.

Visualiseur
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Tout ce qui provient de vis est considéré comme de 1’odométrie visuelle. Ces informations sont
générées par le front-end de 1’algorithme SLAM et sont congues pour 1’évaluation visuelle.
Cela signifie qu’elles n’appliquent pas en continu les optimisations que 1’on retrouve dans le
tracking, bien qu’elles intégrent la fermeture de boucle et certaines corrections de maniere
asynchrone. Etant donné que ces données sont congues pour 1’évaluation visuelle, leur
fréquence est plus ¢élevée que celle du tracking, et les corrections y sont intégrées
progressivement au fil du temps plutét que de maniére directe. Ce comportement les rend

idéales pour le projet, ou I’intégration avec un EKF est nécessaire.

Les informations définissant ces deux sources concordent également avec les résultats observés

lors des différents tests.

7.2 Impact des données visuelles répétitives et de la qualité des images

Lors de I’analyse des résultats obtenus au fil de différents tests, les données visuelles se sont
révélées systématiquement incohérentes dans I’eau en I’absence d’obstacles, tandis qu’elles
¢taient nettement plus stables sur terre. L’ hypothese initiale supposait des problemes liés a
I’intégration de I’'IMU dans 1’algorithme VSLAM, mais cela a été infirmé a la section 7.1.1.
En ce qui concerne 1’algorithme, la conclusion a été que la qualité du flux visuel entrant dans

le VSLAM avait un impact significatif.

Durant les tests terrestres, I’environnement présentait des structures variées, ce qui permettait
au mécanisme de fermeture de boucle de fonctionner comme prévu, menant a une localisation
adéquate. Plus précisément, les observations montrent que la qualité de la localisation lors
d’une boucle est liée a la qualité de la cartographie initiale de I’espace avant I’exécution de la

boucle, comme observé lors du test a sec 2.

Au départ, il était difficile de comprendre pourquoi le prototype refusait d’étre stable dans

I’eau. En utilisant des outils comme RVIZ2 pour visualiser le nuage de points généré par le
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module de cartographie du VSLAM, les données montraient qu’aucune position ou localisation
cohérente ne pouvait étre extraite a partir des observations. En d’autres termes, 1’algorithme

VSLAM éprouvait des difficultés a définir son environnement de maniere stable.

Bien que cette conclusion ait été atteinte, deux facteurs en sont a 1’origine : la répétition de

motifs et la qualité de la vidéo.

7.2.1 Motifs dans les données visuelles

L’un des problemes liés a la localisation, particulierement dans les systemes SLAM basés sur
des graphes, provient de la maniere dont ils utilisent les keyframes observées et comparent les
positions 3D enregistrées dans leur mémoire. Lorsqu’il s’agit de données complexes ou
présentant des variations uniques, ce mécanisme fonctionne trés bien. Méme dans des zones
qui se répetent, si cette répétition ne concerne qu’une petite région d’une carte plus vaste,
I’algorithme parvient généralement a se localiser correctement. Les difficultés apparaissent
lorsque la zone répétitive constitue une portion significative de la carte existante. Dans ce cas,
le comportement observé est que I’algorithme tente de se localiser 1a ou il croit se trouver et

commence a réécrire la carte en conséquence.

Le test a sec 2 illustre parfaitement ce phénomene, car la zone utilisée est un corridor bordé de
grandes portes de garage. En avancant dans ce corridor, les parois se répetent
approximativement tous les cinq metres. Sans prendre le temps de cartographier en détail la
zone de départ, 1’algorithme perd sa position dés que le prototype se tourne vers I’une des

portes de garage.

Cet effet est amplifié¢ lors des essais en piscine. Le sol et les parois présentent des lignes
répétitives, et les murs sont entierement carrelés de blanc. Ainsi, chaque fois que le prototype
tente de cartographier son environnement, le VSLAM éprouve de grandes difficultés a

déterminer sa position dans la carte. Méme la tiche de tracer manuellement la carte de
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I’environnement en incluant au moins deux murs n’est pas utile, car le bruit visuel empéche la
détection des keyframes significatives. La seule situation ou la cartographie devient semi-stable
est lorsqu’un obstacle contrastant est ajouté, c’est-a-dire lorsqu’un objet est placé de maniére

a offrir un arri¢re-plan clairement distinct en couleur, comme lors du test en piscine 2.

Lors de I’'un des derniers essais, le prototype s’est montré beaucoup plus stable lorsqu’il était
orienté¢ directement vers 1’obstacle (dans ce cas, la porte présentée dans la Figure 13 Image
d'un obstacle dans la piscine prise depuis la caméra du sous-marinFigure). Il faut souligner que
I’algorithme VSLAM fonctionnait mieux lorsque I’environnement local n’avait pas été
largement cartographié. Cela s’explique par le fait que, durant la cartographie, dés que le
prototype ne regardait plus 1’obstacle, il perdait son point de référence dans un environnement
ambigu. En revenant vers 1’obstacle, il le cartographie a nouveau au lieu de se relocaliser, ce
qui entrainait la présence de plusieurs obstacles sur la carte mémoire, ce qui cause une

confusion lorsque VSLAM tente de positionner le sous-marin.

Globalement, cela démontre que le VSLAM dépend fortement de la présence de plusieurs
reperes uniques qu’il peut distinguer de 1’environnement, particulierement lorsqu’il repose
uniquement sur les données visuelles. Malheureusement, ce n’était pas le cas pour I’ensemble
des tests réalisés en milieu aquatique, mais il était essentiel de mettre en évidence cette limite,
car le cas d’usage final (la compétition a laquelle participe le club étudiant S.O.N.LLA.) se
déroule également dans une piscine présentant un environnement répétitif. Cela signifie que
I’implémentation finale doit étre capable de fonctionner méme lorsque les keyframes sont

ambigués.

7.2.2 Qualité des images

Bien que les motifs observés aient un impact important sur les résultats, la qualité des données

joue également un role majeur. Cela est suspecté d’étre le principal facteur contribuant au bruit
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dans le nuage de points, ainsi qu’au fait que le VSLAM ne détecte pas davantage de détails ou,
dans certains cas, génére des données erronées. Cette situation est due au fait que le flux visuel
provient d’un milieu aquatique, ce qui rend les images légerement brumeuses et crée un effet
de brouillard lorsque I’on observe des éléments situés a plus de quelques métres. L’éclairage
de I’environnement a également un impact, tant sur la visibilité sous I’eau que sur la création
de réflexions dés que la caméra est orientée vers la surface. La couleur, a la fois celle de
I’environnement et celle captée par la caméra, constitue un autre facteur qui influence la qualité

des résultats.

Etant donné que le flux visuel n’est pas aussi clair que dans I’air, 1’algorithme peine a définir
des keyframes et, méme lorsqu’il y parvient, il a du mal a les re-identifier, car leur qualité varie
selon la distance et 1’éclairage. De plus, il est connu qu’il peut confondre des keyframes avec
leurs reflets; un exemple notable est celui de 1’obstacle en forme de porte, lors duquel le
prototype oscillait en roulis. L’hypothése avancée est que le VSLAM alternait continuellement
entre I’obstacle réel et son reflet comme référence visuelle, mais les données enregistrées ne

permettent pas de confirmer ou infirmer cette hypothese.

Cela démontre que I’environnement, autant a I’intérieur qu’a 1’extérieur, exerce une influence
significative sur la capacité de I’algorithme a comprendre son environnement. Il est encore une
fois essentiel de considérer cette problématique dans le contexte de S.O.N.LLA. et de leur
compétition, qui se déroule a la fois dans une piscine standard et en extérieur. Cela signifie que
la qualité de I’eau, le moment de la journée et la couverture nuageuse influencent tous les trois

le processus.

7.3 Impact de I’odométrie visuelle sur le contréle du mouvement avec EKF

Bien que la capacité a cartographier et mémoriser 1’environnement soit importante, son impact
sur le contréle est tout aussi crucial, voire plus. L’objectif de ce projet est de réduire

I’accumulation de dérive observée dans le controle existant. Les résultats montrent toutefois
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que cela n’est pas aussi simple que ce qui avait été initialement hypothese. Plusieurs facteurs

liés a I’EKF dans le contrdle influencent les résultats, en particulier dans le contexte aquatique.

Parmi les 13 états définis, les entrées originales n’affectent que 11 d’entre eux. Les valeurs de
position en x et y sont inférées. De plus, les valeurs de vitesse linéaire provenant du DVL ne
sont pas fournies de maniére constante en raison des limitations du capteur. Cela indique que,
pour I’EKF avant I’intégration du VSLAM, I’orientation et les vitesses angulaires reposent sur
I’IMU, les vitesses linéaires proviennent du DVL lorsque les données sont disponibles, et la
position en z est basée sur le capteur de profondeur. Deux facteurs contribuent a I’accumulation
de dérive : I’intermittence du DVL et, puisque I’'IMU dépend d’un magnétometre, un léger
décalage de lacet (yaw) apparaissent avec le temps (variant selon les conditions

environnementales).

L’introduction des 13 états complets issus de I’odométrie visuelle a un impact majeur sur les
valeurs de position en x et y, puisqu’elles deviennent désormais la référence (ground truth)
dans I’EKF pour ces valeurs. Pour toutes les entrées de capteurs, I’impact des covariances
définies est important, car il détermine dans quelle mesure I’EKF fait confiance a ces valeurs
de référence. Voici les covariances utilisées dans tous les tests, a I’exception du dernier test en

cau.
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Equation 6
Avec le dernier test utilisant la matrice suivante :
r100 0 0 0 0 0 0 0 0 0 0 0 0 1
0 100 0 0 0 0 0 0 0 0 0 0 0
0 0 100 0 0 0 0 0 0 0 0 0 0
0 0 0 100 0 0 0 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0 0 0 0
0 0 0 0 0 100 0 0 0 0 0 0 0
ZSLAMZ =10 0 0 0 0 0 100 0 0 0 0 0 0
0 0 0 0 0 0 0 100 0 0 0 0 0
0 0 0 0 0 0 0 0 100 0 0 0 0
0 0 0 0 0 0 0 0 0 100 0 0 0
0 0 0 0 0 0 0 0 0 0 100 0 0
0 0 0 0 0 0 0 0 0 0 0 100 0
L 0 0 0 0 0 0 0 0 0 0 0 0 1004

Equation 7

Lors de plusieurs tests en eau (tous utilisant la matrice Zg op, ), 1l a €t€ observe que le prototype
perd rapidement le contrdle en raison d’informations contradictoires provenant a la fois des
capteurs internes et de 1’odométrie visuelle (VO). Méme avec ces covariances, I’influence de
la VO avait toujours un impact significatif sur les états résultants de I’AUV. La variabilité de

I’impact de la VO découle de I’instabilité observée de 1’algorithme VSLAM dans ’eau.
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L’objectif final était, au minimum, d’ajuster 1’orientation retournée par VSLAM pour qu’elle
présente des covariances similaires a celles de 1’orientation de I’IMU. Malheureusement, il
reste nécessaire d’améliorer la stabilité de I’algorithme. La derniére série de tests effectués en
eau a utilisé la matrice de covariance Zgp am,- Lobjectif €tait de tenter d’atténuer I’effet de la
VO sur I’EKF du controle. Les résultats n’ont été mitigés, avec aucune différence notable

observée dans les résultats.

En fin de compte, la premicre étape consiste a créer un systéme capable de générer une VO
fiable, plutot que de se contenter d’utiliser des covariances pour compenser les instabilités ou

les imprécisions.



61

CHAPITRE 8
RECHERCHES FUTURES

L’analyse a montré que les résultats n’ont pas permis d’atteindre les attentes initiales. En se
basant sur 1’ensemble des informations recueillies au cours de la recherche et des tests, voici
les étapes qui seraient a suivre pour implémenter un algorithme VSLAM capable de

fonctionner aux niveaux requis, en particulier sous 1’eau.

8.1 Implémentation alternative du VSLAM

La raison d’avoir mis en ceuvre I’infrastructure VSLAM existante via la bibliotheque NVIDIA
Isaac ROS Visual SLAM reste pertinente compte tenu des contraintes et des informations
disponibles au début de ce projet, mais il serait crucial d’explorer d’autres types
d’implémentations. La principale limitation de la bibliothéque Isaac réside dans le manque de
parametres de configuration facilement accessibles et dans I’absence d’informations claires sur
le pipeline de traitement. Dans ce contexte, adopter une approche plus « minimaliste » pourrait
permettre de développer une solution offrant davantage de possibilités de configuration et

d’ajustement des parametres, idéale pour une utilisation sous 1’eau.

Le choix de continuer a utiliser un algorithme basé sur un graphe reste considéré comme la
meilleure option, car il demeure globalement le plus stable. Une solution envisageable serait
ORB-SLAMS3 pour deux raisons principales : il s’agit d’une solution libre bien connue et elle
constitue la référence utilisée par la bibliotheéque Isaac pour comparer sa propre solution. Cette
approche permettrait de conserver une logique d’utilisation similaire & 1’implémentation
existante. Le principal défi de cette approche réside a la fois dans les difficultés d’optimisation
(aucune de ces solutions n’utilisant nativement le GPU) et dans I’effort nécessaire pour

I’intégrer au réseau ROS2 existant.
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8.1.1 Algorithmes SLAM incluant ’acoustique

Dans un monde idéal, le meilleur choix serait de trouver un algorithme dédié a une utilisation
sous-marine, incluant notamment ceux qui exploitent une entrée acoustique comme un sonar.
Quelques exemples de ce type d’algorithmes sont le Visual-Inertial-Acoustic SLAM avec DVL
(Huang et al., 2025), SVin2 (Rahman, Li et Rekleitis, 2019), et le SLAM utilisant un FLS (Li
et al., 2018).

Ces solutions fonctionnent en tirant parti des informations acoustiques. VIA-SLAM et SVin2
sont tous deux congus pour I’exploration sous-marine, VIA-SLAM étant particulierement
intéressant pour S.O.N.LLA., puisque le prototype principal est déja équipé d’un DVL.
L’approche FLS est également intéressante, notamment dans les situations de faible visibilité,
car cet algorithme utilise un sonar comme principale source d’information. Il est congu pour
fonctionner méme dans des environnements ambigus, tels que le site de la précédente
compétition RoboSub, TRANSDEC a San Diego, Californie, Etats-Unis, ou la visibilité était

extrémement réduite.

Dans tous ces cas, la présence d’un capteur acoustique tel qu’un sonar est nécessaire pour que
I’algorithme fonctionne. L’équipe S.O.N.LLA. prévoit d’intégrer un sonar sur le prototype
AUVS8.1, ce qui lui permettrait d’utiliser ces solutions. Malheureusement, aucun projet
similaire n’est prévu pour le prototype LITE1, ce qui nécessite donc d’explorer d’autres

solutions.

8.1.2 Direct Sparse Visual Odometry

Lors des discussions sur I’avenir des prototypes avec 1’équipe S.O.N.LLA., ils ont exprimé un
intérét pour le remplacement des caméras actuelles par des caméras monoculaires plutdt que
stéréo. La raison en est que I’IA utilisée par I’équipe rencontre des difficultés pour identifier

les objets en raison du mélange des couleurs. L’idée est de passer a une caméra offrant de
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meilleures capacités de détection des couleurs. Ce changement pourrait ouvrir la voie a une
autre approche du SLAM : I'utilisation de Direct Sparse Visual Odometry, ou DSO (Engel,
Koltun et Cremers, 2018).

Seule, la DSO serait moins performante en environnement sous-marin, car elle ne détecte pas
les caractéristiques comme les algorithmes mentionnés précédemment. Son principe repose sur
I’analyse des variations de densité des pixels pour suivre I’environnement (Engel, Koltun et
Cremers, 2018). Cela permet a 1’algorithme de suivre les changements méme lorsque le flux
visuel ne présente pas de caractéristiques significatives. Malheureusement, cela signifie aussi
que lorsque I’environnement produit un flux visuel ou la couleur et I’intensité des pixels restent
similaires en permanence (comme sous I’eau) cette approche ne fournit pas de résultats
concluants. L’intérét réside donc dans son utilisation non pas isolée, mais intégrée a une chaine

de traitement.

11 est fréquent d’utiliser plusieurs méthodes pour concevoir un algorithme global plus efficace,
comme le VI-DSO (Stumberg, Usenko et Cremers, 2018), ou encore la solution complexe
décrite par Fu et Lu (2025). Pour les prototypes de S.O.N.I.A., ce type de solution serait
difficile, mais possible a intégrer dans un EKF existant ou un graphe de facteurs, tout en
ouvrant la possibilité d’une navigation plus robuste et précise, surtout en cas d’évolution de la

technologie des caméras.

8.2 Prétraitement des données

L’une des premiéres étapes de tout algorithme VSLAM basé sur un graphe est I’extraction de
caractéristiques a partir d’une image. Dans de nombreux cas, on utilise un détecteur tel
qu’ORB, SIFT ou SURF (Rublee et al.,, 2011). C’est a partir des résultats de ces
caractéristiques détectées que 1’algorithme global peut assembler la carte 3D utilisée pour la
cartographie, puis pour la localisation. Cela signifie que si les données issues des images sont

incohérentes ou de mauvaise qualité, tout algorithme VSLAM pur verra sa capacité de
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performance réduite. Par conséquent, la recommandation proposée est d’introduire une étape

de prétraitement avant que les images ne soient évaluées par les détecteurs de caractéristiques.

8.2.1 Egalisation d’histogramme

L’¢égalisation d’histogramme est une technique bien connue d’équilibrage des couleurs qui
consiste a créer un histogramme du spectre de couleurs de 1’ensemble de I’image, puis a
rééquilibrer les couleurs pour qu’elles soient plus uniformes sur toute I’image (Patel, Maravi
et Sharma, 2013). Cette méthode permet d’éclaircir les zones sous-exposées et d’assombrir les

Zzones surexposées.

Avec cette approche, les images conserveraient un spectre de couleurs constant et seraient
beaucoup plus résistantes aux variations d’éclairage dans I’environnement. Par exemple, lors
de tests en intérieur ou I’éclairage est fixe dans certaines zones, ce qui crée des régions plus

sombres, ou lors de tests en extérieur avec des nuages provocants des variations de luminosité.

Alors que 1’égalisation d’histogramme agit globalement sur I’image, la méthode CLAHE,
Contrast Limited Adaptive Histogram Equalization, (Nguyen et al., 2020) est une approche
beaucoup plus sire et stable, notamment dans le cadre du VSLAM. En effet, elle minimise le

risque de perte de détails liée aux corrections globales.

8.2.2 Algorithme Retinex

11 s’agit d’une approche plus complexe dans laquelle des algorithmes comme Retinex (Nguyen
et al., 2020) ont pour objectif d’analyser les images du point de vue humain. Cela est réalisé
en séparant ’image en ses composantes d’illumination et de réflectance. A partir de ces
informations, 1’algorithme tente de restaurer les couleurs naturelles de 1’image, notamment
dans des environnements ou I’éclairage est complexe, grace a sa capacité a équilibrer la

lumiére.
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Contrairement a certains autres algorithmes complexes, des recherches ont démontré que
Retinex est particulierement efficace pour 1’analyse sous-marine (Aguirre-Castro et al., 2022).
Cela s’explique par sa capacité de correction adaptative des couleurs, permettant de résoudre

des problémes tels que le faible contraste ou la distorsion des couleurs.

Pour ce projet, I’utilisation de Retinex aurait un impact important sur les résultats, étant donné
que la qualité des couleurs de I’environnement ne sera jamais stable. De plus, puisque cet
algorithme est libre, il existe déja des implémentations que 1’équipe pourrait utiliser pour

accélérer I’intégration.

8.2.3 Exemple de pipeline

Voici une présentation d’un exemple de chaine de traitement (pipeline) qui pourrait tre utilisée

et qui inclut les algorithmes présentés.

0. Image de base 1. Cormection de 2. Transformation en
- mag distortion luminance

¥
3. Légé débruitage

A

6. Transformation & .

Figure 16 Preprocessing Pipeline

En parcourant la Figure, voici les explications pour chaque étape :

1. Cette étape est gérée directement par la calibration de la caméra choisie. Son role est

de corriger toute distorsion générée par la présence dans I’eau et du hublot en acrylique.

2. Ensuite, il est recommandé¢ de convertir I’image dans un espace de travail plus robuste,

tel que le luminance (RGB — YCrCb). En effet, la plupart des techniques qui affectent
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le contraste fonctionnent mieux sur la luminance que sur chaque canal RGB, ce qui

permet d’éviter des décalages de couleur déstabilisants.

L’application d’un filtre de débruitage intermédiaire tout en préservant les contours est
trés utile pour minimiser I’impact des fausses caractéristiques qui peuvent étre générées
en raison de la nature variable de 1’eau. Dans I’amélioration sous-marine, 1’objectif est
d’inclure du débruitage et un lissage afin de maintenir la réflectance stable (Fu et al.,

2014).

Cette étape correspond a I’application de I’algorithme Retinex présenté précédemment.
L’objectif est de corriger 1’illumination et de récupérer toute couleur ou visibilité
perdue. Il est extrémement important que cette correction soit appliquée sur la

luminance et non sur ’'image RGB standard.

L’algorithme CLAHE est ensuite appliqué sur la luminance afin que les variations
locales de contraste soient corrigées et permettent de révéler les textures pouvant aider

a la détection des caractéristiques.

Enfin, comme I’implémentation actuelle du VSLAM attend une image au format RGB,

la derniere étape consiste a reconvertir I’image dans ce format.

Dans cet exemple, la chaine de traitement permet de révéler des informations potentiellement

erdues, mais surtout de créer un environnement minimisant 1’impact des variations de
9

luminosité et de couleur dans 1’environnement.

8.3

Variations dans la fusion des capteurs

La manicre dont les données des capteurs sont fusionnées pour générer les estimations d’état

constitue un facteur majeur dans la qualité des déplacements des prototypes, ce qui influence
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a son tour la capacité a détecter et corriger la dérive. Il est donc important d’examiner

précisément comment cette fusion est appliquée et quel en est I’impact.

8.3.1 Approche basée uniquement sur ’EKF

D’apres les informations disponibles, cette approche correspond a 1’implémentation actuelle
de la solution. Dans cette approche, 1’objectif est de laisser I’EKF réaliser la majeure partie du
traitement, tandis que I’entrée du VSLAM est considérée simplement comme un capteur
supplémentaire. Il est précisé que I’intégration actuelle applique la fermeture de boucle (loop
closure) de maniére asynchrone, mais les données montrent que son impact sur les résultats
globaux est négligeable. C’est pourquoi il est indiqué que 1’implémentation actuelle repose

uniquement sur I’EKF.
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Figure 17 Implémentation EKF Seulement

Dans le modele représenté a la Figure, I’EKF recoit directement les données de chacun des
capteurs et les associe aux 13 états correspondants. De plus, des covariances statiques sont

attribuées a chaque entrée (telles que définies a la section 7.3).

L’entrée VisData correspond a I’odométrie visuelle (VO) contenant les 13 états et est calculée
en combinant les données visuelles et inertielles de la caméra. En définitive, il s’agit d’une

approche trés traditionnelle de la fusion de capteurs, mais également tres robuste et fiable.

Les problémes liés a cette implémentation apparaissent lorsqu’on considere la manicre exacte
dont les données sont fusionnées. En pratique, I’EKF traite chaque flux de données de manicre

indépendante et les fusionne pour produire les états finaux. Cela signifie que les données ne
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sont pas utilisées pour améliorer la qualité des résultats du VSLAM, entrainant la perte des
optimisations intrinséques au VSLAM, telles que I’effet global de la fermeture de boucle ou la
cohérence de la carte a long terme. Cela découle du fait que I’EKF ne tient pas compte des
données passées pour effectuer des corrections (fermeture de boucle), et que la correction de

dérive ne s’applique qu’aux changements observés localement, et non aux corrections globales.

Cette situation conduit directement a la nécessité d’utiliser des covariances plus élevées pour
le VSLAM, en raison des incertitudes accrues, particuliérement lorsque les données visuelles

sont de qualité limitée.

8.3.2 Approche basée uniquement sur le VSLAM

A Tl’inverse de I’approche basée uniquement sur I’EKF, I’approche VSLAM uniquement
implique que I’ensemble des données capteurs soit fusionné directement au sein de
I’algorithme VSLAM, et que I'odométrie visuelle résultante constitue 1’estimation d’état
finale. Cette approche permet d’obtenir une sortie VSLAM potentiellement beaucoup plus
stable, mais entraine une perte d’information provenant de chaque capteur pris
individuellement. De plus, tous les algorithmes VSLAM ne sont pas congus pour prendre en

compte ’ensemble des types de capteurs.

Il existe également une certaine perte d’information, puisque ce type de fusion ne traite pas
explicitement les covariances, mais les considére de maniere implicite a travers les étapes
d’optimisation de I’algorithme. La maniere dont les optimisations et la fermeture de boucle
influencent le résultat final peut aussi engendrer des incohérences dans le contréle du

mouvement, selon la qualité et la disponibilité des données.

Bien qu’il serait intéressant d’observer précisément le comportement de cette approche en

milieu aquatique, il est également nécessaire de considérer qu’un EKF devrait idéalement étre
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placé juste en amont du MPC, afin d’éviter des fluctuations de données excessives qui

pourraient entrainer une défaillance du MPC.

8.3.3 Approche hybride (late fusion)

L’approche hybride constitue la solution théorique idéale (Dellaert et Kaess, 2017). La manicre
exacte de I'implémenter dépend toutefois du type d’algorithme VSLAM utilisé. L objectif est
de laisser le VSLAM effectuer I’ensemble des optimisations et des fermetures de boucle, puis

d’injecter ces résultats dans I’EKF.

La premicére étape consiste a déterminer quelles informations sont transmises au VSLAM et
lesquelles sont envoyées directement a I’EKF, indépendamment de la VO. La logique sous-
jacente est d’identifier quels flux de données ont I'impact le plus bénéfique sur chaque

composant.

En tenant compte des capteurs existants et en supposant que 1’algorithme VSLAM utilisé est
compatible avec la fusion proposée, voici une architecture suggérée : L’algorithme VSLAM
recevrait les données de la caméra stéréo et de son IMU interne, ainsi que celles des capteurs
contribuant a la cohérence globale, tels que le DVL et le capteur de profondeur, qui agiraient
comme contraintes supplémentaires (Huang et al., 2025). De son c6té, I’EKF intégrerait ’IMU
centrale, le DVL, le capteur de profondeur et la pose issue du VSLAM. La justification de cette
répartition repose sur le fait que le MPC nécessite des états du systeme a une fréquence

constante.

Un facteur important a considérer avec cette approche est que la logique de fermeture de boucle
n’influence pas directement la boucle de contrdle de I’EKF, tout en restant prise en compte
indirectement. Les corrections sont appliquées dans le repere global afin que la cartographie et
la localisation globale du VSLAM continuent de fonctionner correctement, sans introduire de

sauts ou de changements significatifs au niveau local. Cela permettrait d’établir des références
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globale et locale stables, assurant un fonctionnement fluide du systéme de contrdle et limitant

I’accumulation de dérive a long terme.

Un autre point a considérer est d’éviter I’évaluation redondante des mémes données. En
pratique, si le VSLAM intégre déja les informations du DVL et du capteur de profondeur, les
liaisons directes de ces capteurs vers ’EKF devraient étre désactivées ou limitées a un role de

simple indication, plutot qu’a une influence directe.

8.4 Validation de la stabilité visuelle

La derni¢re technique recommandée consiste a mettre en ceuvre une méthode permettant
d’évaluer la qualité du flux visuel ou de la sortie du VSLAM. La maniére exacte d’y parvenir
dépendra de I’implémentation spécifique des capteurs et de I’algorithme VSLAM utilisé, mais

I’impact attendu demeurera le méme.

L’objectif serait de relier le résultat de cet algorithme d’évaluation a des covariances variables
du bloc EKF implémenté. Le caractere temporellement variable de ces covariances est
essentiel, car il implique que le niveau de confiance accordé par le systéme a un capteur donné

peut évoluer au cours du temps.

Le VSLAM fournit déja en temps réel les covariances associées a I’odométrie visuelle qu’il
génere, lesquelles pourraient étre intégrées directement dans I’EKF. Toutefois, il est également
pertinent de prendre en compte la qualité du flux visuel afin de déterminer si I’odométrie
visuelle doit étre totalement ignorée dans certaines situations. Cette approche permettrait un
contrdle beaucoup plus fin de la qualité du contréle du mouvement, en offrant la capacité de

filtrer de maniere appropriée des résultats imprécis ou erronés.






CONCLUSION

L’objectif de ce projet était d’évaluer la faisabilité de I’intégration d’un algorithme de VSLAM
avec les prototypes existants de contrdle, dans le but de réduire 1’accumulation de dérive au
cours de la navigation. D’un point de vue théorique, cette approche est cohérente et pertinente,
puisqu’il a été démontré qu’elle fonctionne dans divers contextes en robotique. Toutefois, un
facteur qui n’a pas €été pris en compte dans ces implémentations documentées est I’impact du
milieu aquatique. Ainsi, des facteurs environnementaux imprévus ont eu un impact significatif

tout au long du projet et ont engendré des défis importants.

En particulier, I’environnement aquatique a influencé des parametres tels que la luminosité, la
distorsion des couleurs et la faible visibilité, ce qui a fortement réduit la capacité a détecter des
marqueurs géographiques dans 1’espace entourant I’AUV. L’ensemble de ces éléments a
conduit a une diminution de la fiabilité et de la stabilité¢ de la chaine de traitement VSLAM.
Par conséquent, bien que le systeme ait démontré certaines fonctionnalités, il était loin
d’atteindre le niveau de robustesse requis pour répondre a 1’objectif initial en milieu aquatique.
Ces limitations n’invalident pas la solution proposée, mais mettent plutot en évidence la

complexité accrue du probléme 1i¢ a [utilisation de techniques de vision dans un

environnement sous-marin.

Le chapitre 8 présente plusieurs axes de recherche et pistes d’amélioration permettant de
répondre a un grand nombre des lacunes identifiées lors des essais. En particulier, I’utilisation
d’un algorithme de VSLAM alternatif, I’amélioration du prétraitement visuel ainsi que la mise
en ceuvre d’une fusion de capteurs hybride pourraient avoir un impact significatif sur la
robustesse et la qualité de la solution finale, a condition de disposer de suffisamment de temps
de développement. Avec davantage de raffinement, de tests et d’ajustements, les idées

présentées dans ce rapport demeurent réalisables.

Par ailleurs, bien que plusieurs cas d’utilisation aient été initialement définis pour I’évaluation,

seul le premier a été exploité durant la phase expérimentale. Les deux autres cas d’utilisation
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n’ont pas pu étre mis en ceuvre en raison de problémes de stabilité et de fiabilité des
mouvements, causés par un manque de tests expérimentaux indépendants de ce projet. Cette
limitation souligne davantage I’importance de mécanismes de stabilisation secondaires, en
particulier dans le cas du prototype LITEI. L’intégration de telles stratégies de stabilisation

serait essentielle pour permettre des capacités de déplacement plus avancées.

L’acces a une piscine afin de réaliser des tests fut également trés difficile. En plus du prix, il
faut également trouver un bassin disponible ainsi qu’une période avec suffisamment de
membres de S.O.N.I.A. disponibles afin que les tests se déroulent comme prévu. Tous ces
facteurs, sans compter les problémes techniques imprévus, tels que le bris du tether utilisé lors
des tests, ont fait en sorte que les premiers essais en piscine n’ont pas eu lieu avant la remise
du rapport d’étape. Cela a grandement impacté la planification originelle et a causé du retard,

notamment pour 1’obtention des résultats et I’analyse de ceux-ci.

En conclusion, ce projet démontre que, bien que 1’architecture de navigation proposée soit
théoriquement solide et conceptuellement appropriée, son déploiement réussi nécessite un
temps de développement nettement plus important, une expérimentation approfondie et des
efforts de raffinement supplémentaires. Les enseignements tirés de ce travail constituent
néanmoins une base solide pour des travaux futurs et apportent des lecons précieuses en vue

de I’objectif a long terme d’une navigation autonome sous-marine fiable au sein de S.O.N.L.A.
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