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INTRODUCTION 

Le présent travail porte sur l’amélioration du système de contrôle de mouvement d’un véhicule 

sous-marin autonome (AUV). Le système actuel repose sur un filtre de Kalman étendu (EKF) 

combinant les données d’une centrale inertielle (IMU) et d’un Doppler Velocity Log (DVL), 

comme sur le prototype principal AUV8.1. Dans le cadre du développement du nouveau 

prototype LITE1, un second IMU a été intégré au filtre de Kalman en remplacement du DVL, 

une configuration qui nécessite encore des validations expérimentales. Les données issues des 

capteurs alimentent ensuite un contrôleur prédictif non linéaire adaptatif (MPC) chargé de 

générer les signaux PWM pour les huit moteurs du véhicule. Malgré la stabilité générale 

obtenue, le système présente une accumulation progressive d’erreurs au fil du temps, même 

avec l’ajout de nouveaux capteurs. Afin de pallier ce phénomène, l’objectif de ce projet est de 

concevoir une méthode rigoureuse et efficace de correction de la dérive, en s’appuyant sur 

l’intégration d’un système de cartographie basé sur l’algorithme VSLAM (Visual 

Simultaneous Localization and Mapping). L’analyse des données issues de VSLAM doit 

permettre la correction en temps réel via le module de commande, afin d’améliorer la précision 

et la robustesse globale de la plateforme en conditions réelles. 





 

   

 

CHAPITRE 1 

DÉFINITION DE LA PROBLÉMATIQUE 

1.1 Définition de la dérive 

La dérive est définie comme la déviation progressive et incontrôlée (Le Robert, [s d]). Dans le 

cadre de ce projet, la définition utilisée sera : la déviation progressive et incontrôlée du sous-

marin, en rotation ou en translation, qui n’est pas détectée ou corrigée. Cette déviation ne peut 

être mesurée avec les capteurs du sous-marin puisque ceux-ci ne détectent pas les mouvements, 

autrement la déviation serait corrigée par le contrôle du sous-marin. La dérive doit donc être 

évaluée par un système externe au sous-marin afin d’obtenir des mesures représentatives. Selon 

les observations préalables, la dérive actuelle est surtout en rotation sur l’axe z et semble venir 

des imprécisions de l’IMU. Cependant, dans certaines conditions particulières, d’autres 

mouvements incontrôlés peuvent apparaitre. Par exemple, lorsque le DVL est incapable de 

calculer la vitesse de déplacement, le sous-marin ne peut plus calculer sa position, celui-ci 

commence donc à se déplacer sur le plan horizontal de façon quasi aléatoire. Cela arrive 

lorsque l’onde envoyée par le DVL n’est pas renvoyée ou est déformé, comme lorsque le sous-

marin est retourné ou lorsque le fond de la piscine est trop souple. 

1.2 Cas d’utilisation 

Ce projet vise à améliorer la stabilité à long terme des sous-marins autonomes en réduisant la 

dérive en rotation et en position. Pour cela, l’algorithme VSLAM utilise les images et les 

données de l’IMU fournies par la caméra afin de calculer la vitesse et la position actuelle. Ces 

informations sont ensuite utilisées pour corriger la dérive générée par les imprécisions des 

capteurs. Cependant, l’algorithme VSLAM a besoin de repères visuels pour fonctionner. Cela 

empêche donc l’utilisation en pleine mer, puisqu’aucun élément visible ne serait disponible à 

proximité. Toutefois, la dérive est moins problématique pour cette utilisation puisqu’il n’y 
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aurait rien à proximité avec quoi le sous-marin risquerait d’entrer en collision. Ce projet est 

particulièrement pertinent pour les environnements étroits avec beaucoup d’éléments visuels à 

éviter, comme des cavernes sous-marines ou des épaves. Les applications de ce projet sont très 

spécifiques aux sous-marins autonomes, mais pourraient également servir pour des drones 

aériens dans des environnements qui ne permettent pas l’utilisation de GPS, comme des mines 

(DroneXperts, 2025) ou des opérations qui demandent de la discrétion. Il est important de noter 

que ces technologies existent déjà, mais ne sont pas très répandues puisque le GPS est une 

meilleure solution lorsque disponible et que la plupart utilisent un LIDAR (Aitken, 2025), bien 

que d’autres technologies existent aussi. Ce projet utilise uniquement une caméra 

stéréoscopique avec une centrale inertielle intégrée pour le VSLAM, ce qui pourrait 

possiblement être une autre solution pour les drones aériens.   

 

1.3 Impact environnemental, économique et social 

1.3.1 Environnemental 

D’un point de vue environnemental, la réduction de la dérive de navigation se traduit 

directement par une meilleure efficacité énergétique. En conservant davantage d’énergie au fil 

du temps, le prototype diminue sa consommation globale de batterie, prolongeant ainsi sa durée 

de vie en réduisant la fréquence des cycles de recharge. Cela permet non seulement de limiter 

les déchets électroniques, mais aussi de réduire l’empreinte environnementale liée à la 

production et au recyclage des batteries, ainsi qu’à la production de l’énergie nécessaire à la 

recharge. Comme l’indiquent Soori et al. (2023), « optimization of energy consumption in […] 

robots can reduce operating costs, improve performance and increase the lifespan of the 

robot. » (traduction libre : l’optimisation de la consommation d’énergie dans les robots […] 

peut réduire les coûts d’exploitation, améliorer les performances et augmenter la durée de vie 

du robot.) 
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À l’inverse, la dépendance aux capteurs de navigation à l’estime tels que l’IMU, le DVL et le 

capteur de profondeur entraîne une dérive cumulative, car ces instruments ne possèdent pas de 

mécanismes intrinsèques de correction d’erreur de dérive. Lorsqu’ils sont intégrés dans le 

système de contrôle, cette dérive est amplifiée, générant des inefficacités importantes lors de 

missions de longue durée ou sur de longues distances. Le prototype peut perdre sa cible et être 

forcé de réexaminer l’environnement, consommant ainsi plus d’énergie qu’il n’en faudrait et 

gaspillant un temps précieux. L’utilisation d’un algorithme SLAM corrige activement ce 

problème en rectifiant en continu la dérive, réduisant ainsi à la fois les pertes de temps et les 

pertes d’énergie. Cela profite directement à l’environnement en diminuant la consommation 

énergétique du système et en prolongeant la durée de vie utile de ses batteries.  

Il est vrai que l’ajout d’un module SLAM augmente la demande computationnelle. Cependant, 

les deux prototypes de S.O.N.I.A. alimentent leurs ordinateurs embarqués avec une tension 

constante, ce qui fixe la limite supérieure de consommation électrique. Même sur des 

plateformes où la consommation énergétique de l’ordinateur varie, des algorithmes efficaces 

comme ORB-SLAM et SVO sont connus pour équilibrer performance et faible consommation 

énergétique. Comme le soulignent Chen et al. (2024), « algorithms like ORB-SLAM and SVO 

offer a more balanced approach, achieving moderate performance with significantly lower 

energy consumption. [Especially for drones] where onboard computational power is limited, 

and power efficiency is critical. These algorithms, with lower energy demands, are well-suited 

for platforms where sustainable energy usage is prioritized, and continuous operation is needed 

with minimal energy wastage. » (traduction libre : les algorithmes tels qu’ORB-SLAM et SVO 

offrent une approche plus équilibrée, atteignant des performances modérées avec une 

consommation énergétique significativement réduite. [Particulièrement pour les drones] où la 

puissance de calcul embarquée est limitée et où l’efficacité énergétique est cruciale. Ces 

algorithmes, avec leurs faibles besoins énergétiques, conviennent parfaitement aux 

plateformes où l’utilisation durable de l’énergie est prioritaire et où un fonctionnement continu 

est nécessaire avec un minimum de gaspillage énergétique.) Dans notre cas, l’énergie 
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économisée en réduisant les temps de recherche inefficaces compense largement les coûts 

computationnels liés aux corrections de dérive, produisant un bénéfice environnemental net. 

1.3.2 Économique 

L’intégration d’un algorithme de VSLAM engendre d’abord des coûts initiaux liés au 

développement logiciel, à l’intégration système et, le cas échéant, à l’ajout de capteurs ou de 

capacités de calcul supplémentaires. Toutefois, ces coûts fixes peuvent être amortis sur 

l’ensemble des missions réalisées par le prototype. Sur le plan opérationnel, l’utilisation du 

VSLAM permet de réduire la dérive associée à la navigation à l’estime, ce qui diminue la durée 

moyenne des missions, ainsi que les risques d’échec. Cette amélioration de la fiabilité et de la 

rapidité se traduit par une réduction des coûts liés au temps de mission, à la consommation 

énergétique et aux interventions humaines nécessaires à la récupération ou à la reconfiguration 

du système. 

De plus, la capacité de fermeture de boucle et de relocalisation offerte par le VSLAM, telle 

que mise en évidence par Rahman et al. (2019) : « the inclusion of a VSLAM algorithm enables 

the use of loop-closure and re-localization, both having a significant impact on the precision 

of current and expected navigation. » (traduction libre : l’inclusion d’un algorithme VSLAM 

permet l’utilisation de la fermeture de boucle et de la relocalisation, ayant toutes deux un 

impact significatif sur la précision de la navigation actuelle et prévue.) Ceci contribue à 

accroître le taux de succès des missions et à limiter le risque de perte du véhicule, lequel 

représente un coût financier majeur. À moyen et long terme, la diminution des risques 

opérationnels, de l’usure du matériel et des temps d’arrêt permet d’améliorer la rentabilité 

globale du système. Ainsi, bien que l’implémentation du VSLAM implique un investissement 

initial non négligeable, celui-ci est compensé par des économies cumulées et une meilleure 

prévisibilité des coûts lors des déploiements répétés. 
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1.3.3 Social 

La dimension sociale de ce projet se manifeste principalement dans les domaines de la sécurité, 

de la confiance et de l’accessibilité. Les véhicules sous-marins autonomes (AUV) qui dérivent 

ou échouent de façon imprévisible représentent des risques pour les plongeurs humains, les 

infrastructures environnantes et les véhicules eux-mêmes. Chen et al. (2025) notent, dans une 

étude de synthèse sur les défaillances d’AUV, que « many of the typical failures are due to 

some kind of instrument failure such as Gyroscope or accelerometer failure, DVL antenna and 

sensor failure, and Depth gauge’s pressure sensor damage. » (traduction libre : nombre des 

défaillances typiques sont dues à un type de panne instrumentale, comme une panne de 

gyroscope ou d’accéléromètre, une défaillance de l’antenne ou du capteur DVL, et des 

dommages au capteur de pression de la jauge de profondeur.) Ces défaillances représentent 

non seulement des défis techniques, mais aussi des risques en matière de sécurité.  

L’utilisation de l’odométrie visuelle inertielle (VIO), qui combine SLAM et données d’IMU, 

a démontré des résultats probants pour maintenir la navigation lorsque les capteurs 

conventionnels ne fonctionnent pas comme prévu. Joshi et al. (2023) observent ainsi que VIO 

« has shown results in aiding the AUV navigate its environment when standard sensors do not 

perform as expected. » (traduction libre : a montré des résultats dans l’aide à la navigation de 

l’AUV dans son environnement lorsque les capteurs standards ne fonctionnent pas comme 

prévu.) L’intégration de cette approche réduit les risques liés aux pannes instrumentales, 

limitant les mouvements imprévisibles susceptibles de mettre en danger des plongeurs, 

d’endommager d’autres véhicules ou de nuire à l’environnement marin.  

En améliorant la stabilité et la fiabilité de la navigation, le SLAM et la VIO renforcent la 

sécurité humaine et les taux de réussite des missions. Au-delà de ces bénéfices immédiats, la 

diminution des coûts et l’amélioration de l’efficacité rendent les technologies de navigation 

avancées plus accessibles à un plus grand nombre d’organisations, des groupes de recherche 

universitaires aux institutions de plus petite taille. Cette accessibilité accrue favorise 
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l’innovation, la collaboration et la formation, des bénéfices sociaux majeurs qui dépassent le 

simple cadre technique du projet. 

 



 

   

 

CHAPITRE 2 

ÉQUIPEMENT ET FACTEURS EXTERNES 

2.1 Prototypes 

Le club S.O.N.I.A. possède actuellement deux prototypes actifs et une récemment retraité. 

Bien que les prototypes soient globalement similaires, chacun possède des éléments et des 

concepts uniques qui les distinguent. Ces particularités permettent de les combiner pendant les 

compétitions afin d’accomplir les missions de manière optimale et rapide. 

2.1.1 AUV8.1 

 

Figure 1 Vue de dessous de l'AUV8.1 avec les capteurs 

DVL 

Capteur de profondeur 

Caméra stéréoscopique 

IMU (à l’intérieur) 
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L’AUV8.1 est le plus vieux des 2 prototypes actifs. Sa conception a commencé en 2019, mais 

à cause de la pandémie, sa première compétition ne fut qu’en 2021. Il est équipé de huit 

moteurs, un DVL, un IMU, un capteur de profondeur et une caméra stéréoscopique. C’est le 

sous-marin principal lors de la compétition. 

2.1.2 LITE1 

 

Figure 2 Vue de dessous du LITE1 avec les capteurs 

Le LITE1 est le sous-marin le plus récent de S.O.N.I.A. Il a été conçu et fabriqué en 2025 et a 

participé à sa première compétition la même année. L’idée derrière sa conception était de faire 

un prototype plus petit et plus léger qui ne serait pas capable de faire la compétition seul, mais 

qui viendrait soutenir le sous-marin principal en accomplissant les objectifs les plus simples et 

en lui transmettant des informations. Afin de réduire le poids, certaines fonctionnalités et 

certains capteurs ne sont pas présents sur le LITE1, notamment le DVL.  

IMU (à l’intérieur) 

Caméra stéréoscopique 

Capteur de profondeur 
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2.2 Capteurs 

Cette section présente la liste des capteurs utilisés dans les sous-marins qui sont pertinents pour 

ce projet. 

2.2.1 IMU 

 Les 2 prototypes actuels utilisent le VN-100 (VectorNav, [s d]) de VectorNav. Il s’agit d’une 

centrale inertielle et d’un système de référence d'attitude et de cap. Celui-ci combine 

accéléromètres, gyroscopes et magnétomètres triaxiaux afin de fournir des données 

d’accélération et de rotation en 3 dimensions à haute fréquence. Il communique avec 

l’ordinateur de bord par le port série. Ce capteur sert de référence pour la vitesse de rotation et 

l’orientation du sous-marin. Cependant, malgré la grande précision de cet appareil, celui-ci est 

difficile à calibrer correctement dans ce contexte d’utilisation. En effet, les magnétomètres 

doivent être recalibrés pour chaque utilisation qui se situe à plus d’une centaine de kilomètres 

de la calibration précédente. Pour cela, il faut faire tourner l’IMU dans tous les axes, ce qui est 

difficile dans le cas présent puisque ce capteur ne peut pas être sorti facilement du sous-marin. 

Il faut donc tourner dans tous les sens les sous-marins qui peuvent faire plus de 40 kilos, ce qui 

n’est pas évident et qui affecte négativement la qualité de la calibration. Tout cela cause une 

dérive des données qui proviennent de l’IMU qui impacte la rotation du sous-marin. 

2.2.2 DVL 

L’AUV8.1 utilise le Pathfinder (Teledyne marine, [s d]) de Teledyne afin de connaitre sa 

vitesse par rapport au fond de l’eau. Cette information est calculée en utilisant l’effet doppler : 

le capteur envoie une onde sonore vers le fond, puis mesure la fréquence du rebond. La 

déformation entre le signal envoyé et celui reçu permet de connaitre la vitesse du sous-marin. 

Ce capteur transmet ses informations jusqu’à l’ordinateur par Ethernet. Le Pathfinder est 

également de grande précision, mais le problème vient de l’information fournie. Puisque le 
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DVL calcule la vitesse et que le contrôle a besoin de connaitre la position, il faut intégrer les 

données reçues afin d’obtenir la position actuelle du sous-marin, ce qui est fait implicitement 

par l’EKF. Cela veut donc dire que la moindre erreur cause un décalage permanent dans la 

position calculée. Il est possible que le DVL soit incapable de calculer la vitesse dans certaines 

conditions, comme lorsque celui-ci n’est pas orienté vers le fond de la piscine. Il est également 

possible que la communication entre l’ordinateur et le capteur soit temporairement 

interrompue. Dans ces cas-là, ou toute autre situation où le système de contrôle n’a pas la 

vitesse du sous-marin, il y aura un décalage entre la position réelle du sous-marin et celle 

calculée, puisque les déplacements ne seront pas pris en compte.  

Il est important de noter que le LITE1 n’a pas de DVL et se base sur les données d’accélération 

linéaires afin de connaitre sa position. Puisque pour obtenir cette information à partir de 

l’accélération il faut faire une double intégration, cela ne fait qu’empirer le problème de dérive 

de déplacement.  

2.2.3 Capteur de profondeur 

Les 2 sous-marins utilisent des capteurs de pression afin de connaitre leur profondeur. 

L’AUV8.1 utilise le ISD4000 (Impact Subsea, [s d]) d’Impact Subsea et le LITE1 utilise le 

Bar02 (Blue Robotics, [s d]) de Blue Robotics. L’utilisation de 2 capteurs différents s’explique 

par une différence importante de poids, de taille et de prix. Afin de réduire le poids du LITE1, 

un capteur plus petit et léger a été choisi. Ces 2 capteurs communiquent à l’ordinateur, soit par 

le port série et l’autre par I2C, et fonctionnent sur le même principe : la profondeur du sous-

marin par rapport à un point de référence est calculée à l’aide de la pression et de la température 

de l’eau autour. La valeur obtenue n’a pas de dérive puisque la valeur de référence est mise à 

jour à chaque essai puisqu’il suffit d’enregistrer la pression à la surface avec le capteur. La 

profondeur calculée est donc utilisée comme une vérité absolue dans le contrôle actuel du sous-

marin. 
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2.2.4 Caméra stéréoscopique 

Afin de pouvoir utiliser l’algorithme VSLAM, les 2 sous-marins utilisent une caméra 

stéréoscopique afin d’obtenir un nuage de points de l’environnement. L’AUV8.1 utilise la ZED 

Mini (Stereolabs, [s d]) et le LITE1 utilise la ZED 2i (Stereolabs, [s d]), qui proviennent toutes 

les deux de Stereolabs. L’utilisation de 2 modèles différents est due à la taille des prototypes : 

le LITE1 a été conçu pour pouvoir utiliser la ZED 2i, mais l’AUV8.1 était déjà construit 

lorsque la décision d’ajouter des caméras stéréoscopiques a été prise. Malheureusement, ce 

modèle-ci ne rentrait pas dans la coque, l’équipe a donc décidé de prendre la ZED Mini qui est 

plus compacte. Bien que les spécifications des 2 caméras ne soient pas identiques, elles 

communiquent toutes les 2 par USB et accomplissent la même fonction dans le cadre de ce 

projet, c’est-à-dire de permettre le fonctionnement de l’algorithme SLAM. La perception de 

profondeur des caméras repose sur le décalage entre les images fournies par les 2 capteurs 

présents sur l’appareil. En connaissant les spécifications des capteurs ainsi que la distance entre 

ceux-ci, il est possible de calculer la distance entre la caméra et les objets devant celle-ci. 

2.3 Autres technologies des prototypes 

Les 2 sous-marins actuels utilisent le Jetson AGX Xavier (NVIDIA, [s d]) de NVIDIA comme 

ordinateur de bord. C’est lui qui le cerveau du système et qui est responsable de tous les calculs, 

incluant l’algorithme VSLAM et le Contrôle. Le Xavier est un ordinateur complet dans un 

format compact. Il possède un CPU ARM 64 bits avec 8 cœurs, un GPU NVIDIA et 64 Go de 

mémoire DDR4. Il roule le Jetpack 5.1.5 (NVIDIA Developer, [s d]) qui est une version 

modifiée d’Ubuntu 20.04 fournie par NVIDIA pour ce type d’ordinateur. CUDA 11.4.19 est 

également inclus, ce qui est essentiel afin de faire fonctionner l’algorithme VSLAM. 

Finalement, beaucoup de libraires sont directement compatibles avec les ordinateurs Jetson, 

comme NVIDIA Isaac ROS Visual SLAM, une libraire de VSLAM, ainsi que le kit de 

développement logiciel des caméras Stereolabs. Il est prévu dans un futur proche que le club 
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passe au NVIDIA Jetson AGX Orin qui est la génération suivante de ce type d’ordinateur. 

L’Orin est plus puissant que le Xavier, roule un Jetpack et une version de CUDA plus récents 

et offre plus de compatibilité. Cependant, tout ce projet sera complété sur les Xavier actuels 

puisqu’il est impossible de savoir quand le club sera en mesure d’obtenir des Orins. 

2.4 Autres équipements 

2.4.1 Tether 

Le tether est un rouleau de fil d’Ethernet allant de 50 à 120 mètres de longueur qui permet de 

lier la communication Duckbox vers les prototypes. À cause des contraintes de 

communications dans les milieux marins, le moyen de communication avec l’ordinateur de 

bord est par fil Ethernet. Le câble est hybride comprenant une extrémité RJ45 standard pour 

connexion à la Duckbox et un connecteur SubConn de MacArtney, conçu pour l’utilisation 

dans l’eau, pour la connexion au sous-marin. Cette configuration assure une communication 

fiable entre la Duckbox et le prototype en milieu subaquatique. 

2.4.2 Duckbox 

La Duckbox est un composant servant de point central de communication avec les prototypes 

durant toutes les phases opérationnelles. Elle est composée d’un routeur, d’un ordinateur, d’un 

commutateur réseau (switch) et d’une batterie portable. Cet ensemble met en place un réseau 

local permettant d’établir une connexion à partir des ordinateurs personnels vers les prototypes 

parce qu’une communication sans fil est impossible à établir pour un prototype qui est 

submergé dans l’eau : les ondes radio ne sont pas favorisées pour la communication parce que 

ces dernières sont absorbées dans l’eau. La Duckbox fait également office de point d’accès à 

Internet, permettant de récupérer les mises à jour des projets hébergés sur la plateforme 

GitHub. 
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2.4.3 Chickenbox 

La Chickenbox est utilisée comme source d’alimentation pour le prototype lors des essais 

réalisés hors de l’eau. Son objectif est de remplacer les batteries et de fournir aux prototypes 

une tension constante de 16 V. Ce dispositif permet de travailler sur les prototypes sur de 

longues périodes à l’extérieur de l’eau sans avoir à surveiller en continu le niveau de charge 

des batteries. 

2.4.4 Ordinateurs portables 

Le club possède des ordinateurs portables de travail pour la programmation et tout autre travail 

de club. Ils sont aussi utilisés pour communiquer aux prototypes et de travailler directement 

sur l’ordinateur de bord. Tous les ordinateurs roulent sur Ubuntu 20.04 ou 22.04.  

2.5 Facteurs externes dans les prototypes 

Les prototypes AUV8.1 et LITE1 possèdent deux batteries et une batterie respectivement. Ces 

batteries offrent une autonomie aux sous-marins d’environ deux à trois heures. Il est à noter 

qu’un faible niveau de charge des batteries peut affecter la performance du système en raison 

des pics de courant demandés par les moteurs. De plus, les deux sous-marins sont entièrement 

fabriqués en aluminium et ont été testés pour des opérations inférieures à 10 mètres. Pour finir, 

le champ magnétique généré par les huit moteurs électriques des sous-marins peut influencer 

le magnétomètre dans l’IMU et, par conséquent, altérer les mesures. 

2.6 Facteurs externes dans l’environnement 

Les environnements dans lesquels le prototype se retrouve peuvent affecter la navigation de 

plusieurs façons. Les capteurs présents sur le prototype et qui contribuent à la navigation ont 

des limitations au niveau des conditions des eaux et de la localisation. Ces conditions peuvent 

varier, de la profondeur des milieux, la propreté de l’eau, la forme du fond, des piscines à 
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l’intérieur, la température et d’autres conditions de plus. Ces limitations peuvent causer des 

fausses données des capteurs ou des erreurs de transmission de données. Donc, la localisation 

est un élément à analyser avant une opération pour obtenir les meilleures performances ou d’où 

moins comprendre l’impact que celui-là possède sur les prototypes. 

Pour le DVL, les ondes sonores transmises peuvent être affectées par une concentration 

significative de bulles présentes dans l’eau causée par des grand vagues. Ces bulles brisent les 

ondes transmises ou, dans les cas où ces derniers arrivent à pénétrer, modifient leur vitesse 

sonore. Ce problème affecte le facteur d’échelle de l'effet Doppler. De plus, la présence des 

algues dans certains milieux aquatiques ne permet pas au DVL de déterminer le fond absolu et 

peut causer des mesures de vitesse inexactes. Pour finir, dans les eaux salées, soit une 

concentration de plus de 35 ppt, l’absorption des ondes sonores dans l’eau augmente et réduit 

la capacité d’altitude du DVL. Donc, le prototype ne pourrait pas opérer à certaines 

profondeurs dépendant de la salinité (Teledyne marine, [s d]). 

 

Pour l’IMU, le magnétomètre interne est capable de détecter non seulement le champ 

magnétique terrestre, mais aussi les champs magnétiques générés par des objets autour. En 

fonctionnement normal, l’IMU s’appuie sur le champ terrestre pour déterminer le cap. 

Cependant, des perturbations magnétiques peuvent survenir et affecter la précision des 

mesures. Dans le contexte de prototypes aquatiques, les grandes infrastructures représentent 

des sources potentielles de perturbations.  En effet, pendant les opérations dans les piscines 

intérieures, il est possible de noter des perturbations magnétiques parce que ces derniers sont 

dans de grandes infrastructures, habituellement métalliques, et qui possèdent beaucoup 

d’équipement électrique. Le manuel du modèle de l’IMU utilisé, Vectornav VN-100, indique 

trois modes de gestion du cap permettant de réduire l’effet des perturbations et minimiser les 

erreurs dans les données. Il s’agit d’utiliser le cap absolu lorsque le champ magnétique mesuré 

est presque entièrement le champ terrestre, utiliser le cap relatif lorsque le cap absolu devient 
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peu fiable en raison des perturbations et utiliser le cap intérieur dans les environnements 

fortement perturbés comme les piscines intérieures. Ces trois modes permettent à l’IMU de 

fournir des données fiables en fonction de l’environnement d’opérationnel (VectorNav, [s d]).  





 

   

 

CHAPITRE 3 

MÉTHODOLOGIE DE TEST 

3.1 Types de tests 

3.1.1 Test à sec 

Les tests à sec sont essentiels, car ils permettent de récolter des données sans avoir accès à une 

piscine. En effet, la location d’un bassin suffisamment grand et profond pour les tests est 

couteuse. De plus, il faut planifier plusieurs jours à l’avance afin que le bassin soit libre et aussi 

que suffisamment de membres de S.O.N.I.A. soient disponibles afin de rendre le test possible. 

Ces tests permettent d’obtenir toutes les données reliées au VSLAM ainsi qu’à l’IMU. 

Cependant, le DVL ne fonctionne que dans l’eau, il est donc impossible d’avoir des données 

de vitesse, et puisque le contrôle actuel se base uniquement sur la vitesse mesurée par le DVL 

pour calculer la position, ces données ne sont également pas disponibles. Il est aussi impossible 

de vérifier la stabilité du sous-marin puisque celui-ci est incapable de se déplacer hors de l’eau.  

Afin de réaliser ces tests, le sous-marin est placé sur un chariot avec tout le matériel nécessaire 

à son fonctionnement, comme la Duckbox et la Chickenbox. Le chariot est ensuite déplacé à 

la main en suivant un itinéraire prédéterminé et les données sont enregistrées dans un ou 

plusieurs ROS Bag.  

3.1.2 Test en piscine 

Les tests en piscines permettent de confronter directement la problématique, de recueillir les 

données de dérive et de valider l’implémentation de VSLAM dans le système de contrôle dans 

le but de corriger la dérive. Comme le prototype est conçu pour le milieu aquatique, les 

conclusions seront plus basées sur les tests en piscines. Contrairement au test à sec, tous les 
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capteurs sont fonctionnels, incluant le DVL. Le système de contrôle est donc très utilisé 

pendant ces tests afin d’analyser le comportement du prototype et d’évaluer la performance de 

la navigation lors de l’intégration du VSLAM. Les données enregistrées pendant ces tests sont 

celles de l’ancien et nouveau système pour pouvoir effectuer une comparaison. Ces tests 

permettent aussi de vérifier les conditions requises pour confirmer la validité de VSLAM dans 

l’eau puisque la vision de la caméra stéréoscopique est affectée par l’eau ainsi que par les 

variations de luminosité, ce qui cause des erreurs comme la distorsion des images. Cependant, 

pour la réalisation des tests avec le prototype principal AUV8.1, certaines contraintes doivent 

être respectées concernant le type de piscine utilisé. La qualité de la piscine influence fortement 

les performances du DVL sur le prototype, un capteur conçu pour opérer en milieu océanique. 

Les piscines idéales sont celles creusées avec un fond en béton, qui offrent des surfaces dures 

et stables permettant une propagation adéquate des ondes acoustiques. À l’inverse, les piscines 

hors terre ou celle dont les parois contiennent un revêtement mou sont à éviter. Dans ces 

environnements, les ondes sonores émises par le DVL sont perturbées, ce qui dégrade 

significativement la qualité des mesures et peut rendre le prototype instable. Pour le prototype 

LITE1, l’absence de DVL élimine cette contrainte : les piscines hors terre ou à parois souples 

peuvent donc être utilisées sans impact majeur sur la performance. Cependant, lorsque des tests 

doivent être réalisés simultanément ou comparativement avec les deux prototypes, il est 

nécessaire d’utiliser une piscine répondant aux exigences du AUV8.1. 

3.2 Procédure de test 

Lors des tests, les données sont enregistrées à l’aide du système d’enregistrement de ROS2, 

les ROS Bags. Ce sont des fichiers sur lesquels sont enregistrées toutes les données envoyées 

sur les topics choisis. Ces fichiers peuvent ensuite être rejoués afin d’extraire les données 

voulues dans des fichiers CSV qui sont ensuite intégrées dans des tableaux Excel pour être 

analysées. De plus, les tests ont été filmés afin de permettre une comparaison entre les résultats 

des Bags et la réalité.  



 

   

 

CHAPITRE 4 

SLAM 

4.1 Définition et types 

SLAM – Simultaneous Localization And Mapping 

Dans le monde actuel de la robotique, les systèmes dotés de capacités de navigation autonome 

gagnent en popularité. L’une des exigences essentielles pour les robots autonomes est la 

capacité de naviguer dans un environnement inconnu tout en évitant les obstacles et en 

atteignant leur destination en toute sécurité (Qiao, Guo, & Li, 2024). Bien que ce soit un vaste 

sujet, c’est l’aspect de la navigation qui suscite ici l’intérêt. La localisation et la cartographie 

sont les éléments clés qui permettent aux robots de comprendre leur environnement et de 

connaître leur propre position (Qiao, Guo, & Li, 2024). L’algorithme SLAM est une approche 

largement utilisée pour construire une carte d’un environnement et estimer la position du robot 

à l’intérieur de celui-ci (Qiao, Guo, & Li, 2024) (Das, 2020) (Yan, Guorong, Shenghua, & 

Lian, 2009).  

Les algorithmes de SLAM se composent généralement de deux éléments : la cartographie et la 

localisation. Le composant de cartographie construit une carte de l’environnement à partir des 

données des capteurs, tandis que le composant de localisation estime la position du robot à 

l’intérieur de cet environnement (Qiao, Guo, & Li, 2024). Il existe plusieurs types d’approches 

en matière de localisation, telles que les approches basées sur les filtres, les approches basées 

sur les graphes et les filtres à particules. Ces trois types seront explorés plus en détail dans le 

présent document.  

En lien avec le projet S.O.N.I.A., le cas d’utilisation idéal pour ces implémentations se situe 

dans des environnements sans accès GPS et dépourvus de tout contexte environnemental. 
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4.1.1 SLAM basé sur les filtres 

 Les approches basées sur les filtres font référence à l’utilisation des filtres de Kalman (KF). 

Un KF est un algorithme mathématique utilisé pour l’estimation d’état dans les systèmes 

linéaires. L’algorithme fonctionne en deux étapes : la prédiction et la mise à jour. Durant la 

phase de prédiction, le filtre estime le prochain état du système à partir des données passées. 

La phase de mise à jour corrige ensuite cette estimation à l’aide des nouvelles données fournies 

par les capteurs. Ce processus est récursif et s’exécute de manière continue (Das, 2020). Une 

version de ce filtre exploite le filtre de Kalman étendu (EKF), qui excelle dans les estimations 

linéaires appliquées à des systèmes non linéaires (Yan, Guorong, Shenghua, & Lian, 2009). Le 

filtre utilisant l’EKF est également appelé un programme à covariance complète, car il emploie 

un vecteur d’état augmenté et une matrice de covariance pour déterminer les corrélations entre 

les états et leurs caractéristiques. Le compromis de l’utilisation d’un EKF ou de filtres 

similaires réside dans le fait que leur conception d’estimation linéaire les rend adaptés 

uniquement aux systèmes faiblement non linéaires. La marge d’erreur augmente de façon 

exponentielle dans le cas de systèmes fortement non linéaires. Malgré ce compromis, cet 

algorithme demeure largement utilisé (Yan, Guorong, Shenghua, & Lian, 2009).  

Il est important de mentionner que, dans la plupart des cas généraux — particulièrement dans 

le cadre du projet AUV de S.O.N.I.A. — le problème à traiter est non linéaire. Cela découle 

du fait que l’AUV opère avec six degrés de liberté (6-DOF) et qu’il navigue en milieu 

aquatique. Lorsqu’on travaille sur un plan 2D, il est possible d’approximer la linéarité. 

Malheureusement, puisque l’AUV évolue dans l’eau, il est impossible de garantir des 

mouvements strictement bidimensionnels. De plus, en raison de l’absence de GPS, il n’existe 

aucune référence externe. 

Un exemple d’algorithme, le MSCKF, illustre comment un SLAM basé sur les filtres peut être 

mis en œuvre pour des systèmes non linéaires, tout en intégrant potentiellement une 

composante visuelle (Mourikis & Roumeliotis, 2007). Bien que ce système soit performant, 
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l’aspect visuel présente des limites dans des environnements instables, notamment à cause des 

variations d’intensité lumineuse. La solution efficace consiste à intégrer un capteur visuel-

inertiel, c’est-à-dire une caméra stéréo combinée à une IMU. Ce type de capteur permet de 

rendre la composante visuelle de l’algorithme SLAM beaucoup plus stable, améliorant ainsi la 

qualité des résultats (Qiao, Guo, & Li, 2024) 

Les deux principales limites des algorithmes SLAM basé sur les filtres sont : le coût 

computationnel et la forte incertitude due au biais des capteurs. Concernant le coût 

computationnel, on peut estimer la complexité du EKF-SLAM à O(N²), où N représente le 

nombre d’observations. La forte incertitude provient du fait que toutes les estimations 

dépendent de la précision des capteurs utilisés. En tenant compte du biais inhérent que peuvent 

présenter ces capteurs, on risque d’obtenir un biais final exponentiellement amplifié, puisqu’il 

se cumule sur l’ensemble des capteurs employés (Yan, Guorong, Shenghua, & Lian, 2009). 

Cet aspect d’incertitude élevée peut toutefois être réduit par une calibration rigoureuse et 

l’utilisation de techniques de vision odométrique (Visual Odometry) permettant d’obtenir un 

référentiel local plus stable (Qiao, Guo, & Li, 2024). 

4.1.2 SLAM basé sur les filtres à particules 

 L’approche basée sur les filtres à particules repose sur une hypothèse de base selon laquelle 

le modèle de prédiction est erroné. Les filtres à particules adoptent une approche probabiliste 

pour déterminer la localisation, en intégrant des modèles imparfaits et des capteurs imparfaits 

au moyen de lois probabilistes telles que la règle de Bayes. En tant qu’une des approches les 

plus anciennes en matière de localisation, elle a contribué de manière importante à faire 

progresser la résolution du problème SLAM. En particulier, elle a permis de traiter le problème 

du robot kidnappé, où le robot doit retrouver sa position dans un contexte d’incertitude globale 

(Thrun, 2002). Bien que cela puisse sembler impressionnant, cette approche présente une limite 

importante : l’environnement est supposé entièrement connu (c’est-à-dire qu’une carte est déjà 

donnée). De plus, elle est toujours « fausse » dans la mesure où elle repose sur des modèles 
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probabilistes supposés erronés dès le départ. Ainsi, elle est excellente pour l’approximation et 

la prédiction, mais peu fiable pour la certitude absolue. 

Un algorithme emblématique utilisant les filtres à particules est FastSLAM, dont le nom est 

assez explicite. La complexité de calcul de cet algorithme est la plus faible parmi ceux 

mentionnés dans ce document, soit O(M log n), où M représente le nombre de particules et n 

le nombre de repères (Thrun, 2002). Dans le cas d’utilisation du projet, M croît généralement 

avec n, de sorte que la complexité peut être réécrite sous la forme O(n log n) (Thrun, 2002) 

(Hanenko, Storchak, Shlianchak, Vorohob, & Pitaichuk, 2025). Il convient également de noter 

que cette méthode est affectée par la dimensionnalité : elle a du mal à traiter les problèmes à 

haute dimension, en raison du nombre de particules qui augmente de façon exponentielle pour 

représenter correctement un état (Thrun, 2002). Le projet S.O.N.I.A. est considéré comme un 

système à haute dimensionnalité avec ses 13 états. 

Contrairement au SLAM basé sur les filtres de Kalman, cette approche peut être modulaire. 

L’algorithme SLAM peut être divisé en deux parties : le front-end et le back-end. Le front-end 

consiste à collecter les données des capteurs (extraction de caractéristiques) et à établir les 

associations de données entre les différentes observations (suivi de caractéristiques à court 

terme, bouclage à long terme). Le back-end, quant à lui, traite les observations associées pour 

générer les corrélations nécessaires à la cartographie et à la localisation (Cadena et al., 2016). 

Les algorithmes de particules modernes, tels que FastSLAM, tirent parti de cette structure 

modulaire en utilisant des filtres EKF dans le front-end, afin d’améliorer la précision des 

estimations. Cette approche permet également de reconstruire l’environnement de manière plus 

efficace (Thrun, 2002).  

4.1.3 SLAM basé sur les graphes  

L’approche basée sur les graphes consiste en la « [construction d’un] graphe dont les nœuds 

représentent les poses du robot ou des repères, et dans lequel une arête entre deux nœuds 



25 

   

 

encode une mesure de capteur qui contraint les poses connectées » (Grisetti, Kümmerle, 

Stachniss, & Burgard, 2010). Le cœur du problème consiste à trouver une configuration des 

nœuds la plus cohérente possible avec les mesures, ce qui revient à résoudre un grand problème 

de minimisation d’erreur (Grisetti, Kümmerle, Stachniss, & Burgard, 2010). À l’instar des 

filtres à particules, cette approche tire également parti de la séparation entre le front-end et le 

back-end du SLAM. Cette distinction est particulièrement importante ici, car le SLAM basé 

sur les graphes se concentre principalement sur la partie back-end du processus (Grisetti, 

Kümmerle, Stachniss, & Burgard, 2010).  

Un avantage majeur de cet algorithme est qu’il est conçu pour s’appuyer entièrement sur 

l’environnement observé et qu’il fonctionne efficacement dans des systèmes non linéaires. Le 

compromis réside dans le fait qu’il s’agit de l’algorithme ayant la complexité la plus élevée 

parmi toutes les approches SLAM mentionnées, soit O(n³) (Hanenko, Storchak, Shlianchak, 

Vorohob, & 11 Pitaichuk, 2025). Bien que cette complexité soit importante, la précision 

temporelle du système est également l’une des meilleures, car une fois l’origine du graphe 

définie, toutes les références qui y sont reliées deviennent extrêmement précises (Durrant-

Whyte & Bailey, 2006). Un facteur clé contribuant à cette précision est l’étape de fermeture 

de boucle (loop closure), absente des approches basées sur les filtres. La fermeture de boucle 

fait référence à la capacité de l’algorithme à reconnaître un repère déjà visité, même si celui-

ci n’apparaît pas exactement dans la même position qu’auparavant. Cela permet à l’algorithme 

d’optimiser l’ensemble du graphe afin que les nouvelles informations demeurent cohérentes 

avec les données existantes (Hanenko, Storchak, Shlianchak, Vorohob, & Pitaichuk, 2025).  

Un exemple bien connu de cette implémentation est ORB-SLAM, qui intègre des techniques 

de vision odométrique (Visual Odometry) ainsi que des capteurs visio-inertiels (Visual-Inertial 

Sensors) (Grisetti, Kümmerle, Stachniss, & Burgard, 2010). 
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4.2 Comparaison et solution potentielle 

Lors de l’analyse de ces méthodes, plusieurs points de comparaison peuvent être relevés, 

comme le mentionnent (Hanenko, Storchak, Shlianchak, Vorohob, & Pitaichuk, 2025). En 

comparant le SLAM basé sur les filtres, le SLAM à particules et le SLAM basé sur les graphes, 

on observe divers compromis. Dans tous les cas, le EKF-SLAM fonctionne mieux pour des 

systèmes linéaires avec un bruit gaussien, mais cette situation est rarement (voire jamais) 

rencontrée en pratique. Même dans ce cas, le EKF-SLAM demeure généralement le meilleur 

choix pour les systèmes de petite échelle, en raison de son faible coût computationnel. 

Toutefois, à mesure que le système grandit, il devient moins efficace que les autres options. 

Pour les systèmes de grande échelle, les approches basées sur les graphes (Hanenko, Storchak, 

Shlianchak, Vorohob, & Pitaichuk, 2025) et celles à particules offrent de meilleures 

performances en termes de précision (Hanenko, Storchak, Shlianchak, Vorohob, & Pitaichuk, 

2025) (Das, 2020).  

En observant l’échelle et la complexité des systèmes, le SLAM basé sur les filtres tend à mieux 

fonctionner au départ, mais perd rapidement en efficacité à mesure que la complexité des 

calculs et la taille du modèle augmentent. Les approches basées sur les graphes et à particules 

sont beaucoup mieux adaptées aux systèmes à grande échelle. Bien que les filtres à particules 

soient techniquement plus rapides, avec une complexité d’O(n log n), leur précision demeure 

inférieure à celle du SLAM basé sur les graphes. C’est à ce stade que les avantages et les 

compromis entre les différentes approches deviennent apparents. Comme la majorité des 

systèmes modernes sont de grande taille et que l’objectif principal est la précision, la 

combinaison EKF + SLAM basé sur les graphes tend à être l’approche privilégiée dans la 

plupart des cas d’utilisation.  

Le système idéal, sans limites de puissance de calcul ni de mémoire, combinerait les trois 

approches. Il utiliserait des filtres EKF dans le front-end du SLAM — ce que font déjà 

ORBSLAM et FastSLAM — et une combinaison de SLAM basé sur les graphes et de SLAM 
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à particules dans le back-end. L’idée serait d’employer un EKF pour fusionner les données 

capteurs et effectuer l’association de données, de laisser le SLAM basé sur les graphes, 

cartographier les environnements inconnus et suivre les repères, et d’utiliser le SLAM à 

particules dans les environnements connus afin de filtrer la précision des prédictions, tout en 

revenant au graphe en cas d’incertitude. 

En ce qui concerne le projet S.O.N.I.A., la meilleure approche, compte tenu des informations 

disponibles et des contraintes de ressources, serait d’utiliser une solution EKF + graphe. D’une 

part, comme un EKF fait déjà partie du système de contrôle, il n’est pas nécessaire d’en 

concevoir un nouveau. D’autre part, le choix du SLAM basé sur les graphes s’explique par la 

volonté de réduire la dérive au fil du temps, rendant ainsi la précision des données absolument 

essentielles. 

Il n’est pas possible de développer une solution personnalisée dans les limites de temps et de 

ressources imposées au projet, et il est donc nécessaire de recourir à des cadres existants. 

L’objectif est de se rapprocher du meilleur scénario théorique décrit précédemment. La 

première option est ORB-SLAM3, particulièrement intéressant pour ses aspects visuo-inertiels 

et sa réputation dans l’industrie (Campos, Elvira, Rodríguez, Montiel, & Tardós, 2021). 

Ensuite, Nav2 est une option intéressante grâce à son intégration directe avec ROS2 (« Nav2 

— Nav2 1.0.0 documentation », s.d.). Enfin, NVIDIA_ISAAC_VISUAL_SLAM est conçu 

pour fonctionner sur le GPU plutôt que sur le CPU, ce qui est avantageux puisque les 

prototypes utilisent des ordinateurs de bord NVIDIA (« Isaac ROS Visual SLAM — 

isaac_ros_docs documentation », s.d.). D’autres solutions pertinentes sont mentionnées dans 

(Merzlyakov & Macenski, 2021), notamment OpenVSLAM, qui présente également un certain 

intérêt. 

Cependant, bien que Nav2 soit convivial et facile à intégrer, il ne correspond pas au cas 

d’utilisation pour deux raisons principales : premièrement, il est conçu pour des 

environnements 2D (« Nav2 — Nav2 1.0.0 documentation », s.d.) ; deuxièmement, il repose 
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sur un SLAM purement basé sur l’EKF pour la localisation (« robot_localization wiki — 

robot_localization 2.7.7 documentation », s.d.), alors qu’ORB-SLAM3 et Isaac Visual SLAM 

sont basés sur les graphes. Bien que ces deux derniers soient comparables, une étude menée 

par NVIDIA démontre qu’Isaac est légèrement supérieur sur les systèmes NVIDIA (« Isaac 

ROS Visual SLAM — isaac_ros_docs documentation », s.d.). De plus, même si ORB-SLAM3 

dispose d’une implémentation ROS2, il n’a pas été testé sur ROS2 Humble, la version utilisée 

par le projet (Jung, 4 août 2022/2025). Le même argument s’applique à OpenVSLAM, dont la 

compatibilité avec ROS2 n’a pas encore été solidement démontrée (« ROS Package — 

OpenVSLAM documentation », s.d.). Ainsi, la solution optimale serait d’utiliser Isaac Visual 

SLAM, car il existe de solides preuves de compatibilité et une intégration fluide avec 

l’infrastructure déjà en place. 

4.3 Impact sur le système actuel 

L’intégration de l’algorithme de VSLAM n’a pas démontré d’impact visible sur le système de 

l’AUV8.1 parce que ce dernier répond aux exigences minimales de la libraire de 

NVIDIA_ISAAC_VISUAL_SLAM. En effet, après avoir effectué l’implémentation et des 

phases de tests, aucun impact négatif n’a été remarqué sur le système. Cependant, il serait 

intéressant d’observer la réaction du système si l’algorithme tournait en parallèle avec un 

modèle d’IA nécessaire aux opérations du prototype lors de la compétition, étant donné que 

les deux utilisent la carte graphique du système. Ce test, qui a pour but d’analyser les limites 

de l’usage de l’algorithme en parallèle avec d’autres ressources du système, n'a pas été réalisé 

parce qu’il n'était pas possible d’obtenir une phase de test avec un modèle d’IA pendant la 

réalisation du projet. 

4.4 Critère d’analyse 

Les critères qui vont permettre de confirmer la conformité de l’algorithme reposent sur la 

fiabilité de l’odométrie fournie par VSLAM ainsi que la précision du nuage des points généré 
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à partir des images de la caméra. Le premier critère permet d’évaluer dans quelle mesure 

l’implémentation de cet algorithme améliore l’état actuel du système. En effet, si l’odométrie 

produite par l’algorithme n’est pas suffisamment fiable, il devient peu pertinent de considérer 

VSLAM comme une solution efficace pour la correction de la dérive. 

Par ailleurs, si le nuage de points, par rapport au sous-marin, n’est pas bien défini, c’est-à-dire 

si les corrections des points résultant de la fermeture de boucle sont de faible qualité. Alors, 

VSLAM ne fonctionne pas de façon optimale. Cette dégradation peut être causée, entre autres, 

par une qualité insuffisante des images ou des mauvaises conditions environnementales.  

 

4.5 Données en entrée 

4.5.1 Caméra stéréo 

Les lentilles droite et gauche fournissent des paires d’images permettant d’identifier des points 

clés correspondants. De plus, grâce à la capacité de la caméra stéréo à fournir des informations 

de profondeur, il est possible d’estimer la distance entre la source et chaque point clé, ce qui 

permet ensuite de déterminer la position de ce point dans un espace 2D ou 3D. L’ensemble de 

ces points clés constitue la cartographie et permet de localiser le prototype dans son 

environnement. (MathWorks, [s d] ; NVIDIA Isaac ROS, [s d]) 

4.5.2 IMU 

Le système SLAM peut fonctionner entièrement à partir des caméras stéréo, en s’appuyant sur 

l’odométrie visuelle (VO) générée par le flux vidéo des lentilles droite et gauche. Cependant, 

dans les conditions où ces données ne sont pas suffisamment précises pour estimer la pose, 

comme en cas de distorsions d’image, de mauvaise luminosité ou de surfaces aux propriétés 
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optiques défavorables, les données issues de l’IMU permettent d’obtenir une estimation de 

pose plus précise et plus stable. (MathWorks, [s d] ; NVIDIA Isaac ROS, [s d]) 

4.6 Données en sortie 

À partir des entrées, l’algorithme de VSLAM est capable de produire une estimation 

d’odométrie et une représentation de l’environnement par des points en 3D autour de la caméra. 

4.6.1 Odométrie visuelle 

L’odométrie visuelle est le résultat de l’analyse des entrées de l’algorithme de VSLAM : les 

images des caméras et les données de l’IMU. L’algorithme utilise une libraire cuVSLAM de 

NVIDIA pour traiter les images stéréo directement sur le GPU du système. Le cuVSLAM 

détecte des points distinctifs dans les images pour générer des points correspondants dans 

l’espace 3D. Ces points visuels sont intégrés dans une carte interne qui permet d’estimer le 

mouvement dans l’espace de la caméra dans l’espace. Concrètement, il calcule le mouvement 

en comparant les points qu’il a déjà observés avec ceux détectés en temps réel. L’ensemble de 

ces étapes permet de produire l’odométrie visuelle qui fournit la position et l’orientation de 

l’observateur par rapport à son environnement (Anon, [s d]). 

4.6.2 Nuage de points 

Le nuage de points représente une disposition des points générée par l’algorithme. La 

distribution de points reflète la structure de l’environnement observé par la caméra, chaque 

point étant défini par des coordonnées en trois dimensions.  Figure 3 illustre un exemple de 

propagation des points dans l’espace de l’atelier du club S.O.N.I.A, tel que montré dans la 

Figure 4. Les points en blanc représentent un historique des points déjà observé par 

l’algorithme tandis que les points rouges indiquent la fermeture de boucle (loop closure).  
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La fermeture de boucle arrive lorsque la caméra revient dans un environnement déjà visité et 

reconnait les points déjà existants dans la carte. Lorsque ce processus survient, le cuVSLAM 

corrige les erreurs accumulées au cours de l’odométrie visuelle et réajuste la position de 

certains points récents en fonction des points précédemment observés. Ce processus améliore 

la cohérence de la carte et permet d’obtenir une trajectoire globale plus précise. 

 

Figure 3 Point cloud de l'espace des ateliers 
 

 

Figure 4 Vue de l’intérieur de l'atelier du club de S.O.N.I.A. 





 

   

 

CHAPITRE 5 

SYSTÈME DE CONTRÔLE  

5.1 Définition 

Le système de contrôle du sous-marin comprend un filtre de karman étendu (EKF) et un MPC 

adaptatif. La combinaison des deux approches est conçue pour des systèmes non linéaires et 

qui sont soumis aux variations et perturbations de l’environnement. Avec un tel système, le 

sous-marin est capable d’évoluer dans les 6 dégrées de liberté, définis par la position et 

l’orientation. Le contrôle repose sur un estimateur d’état généré par la fusion de capteurs de 

pression, d’IMU et du DVL du sous-marin dans l’EKF. En tenant compte du centre de gravité 

du sous-marin, le MPC utilise ensuite l’état estimé pour calculer et envoyer les PWM aux huit 

moteurs pour orienter et positionner le sous-marin vers l’état désiré. 

 

5.2 Implémentation actuelle de proc_nav (EKF) 

Pour l’implémentation actuelle de proc_nav, celui-ci possède comme sortie treize états du 

sous-marin : trois positions, quatre orientations dans un quaternion, trois vitesses linéaires et 

trois vitesses angulaires. Ces états proviennent des trois capteurs du sous-marin, comme 

montré dans le Tableau 1, et sont envoyés au MPC. Ce dernier traite les états reçus pour, 

ensuite, envoyer des signaux aux moteurs pour le déplacement à effectuer et retourner les 

forces en newtons des moteurs au proc_nav pour la prochaine itération. Le présent projet 

permet d’analyser trois cas d’utilisation distincts grâce à l’intégration de nouveaux concepts et 

équipements, notamment l’algorithme VSLAM :  

1. Un cas d’utilisation IMU + DVL : VectorNav VN-100 avec le DVL Pathfinder de 

Teledyne. 
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2. Un cas d’utilisation IMU + IMU : VectorNav VN-100 combiné avec l’IMU intégré 

à la caméra stéréoscopique. 

3. Un cas d’utilisation IMU + IMU + DVL : les deux IMUs ainsi que le DVL. 

 

Tableau 1: Les types d'états du filtre de Kalman 

Type d’état Source(s) 

Orientation IMU 

Position Capteur de pression, Calculé 

Vitesse linéaire DVL 

Vitesse angulaire IMU 

 

Dans le système de contrôle, il y a trois parties concernant l’obtention des treize états, comme 

montré dans la Figure 5 : il y a le prétraitement des mesures venant des capteurs, le filtre de 

Kalman étendu et le rassemblement des données d’états dans un objet bus de Simulink. En ce 

qui concerne les états, le système se fie entièrement sur l’orientation provenant de l’IMU pour 

sa précision importante grâce au magnétomètre. Cependant, l’orientation en z peut acquérir de 

la dérive dépendamment des conditions de l’environnement. Pour la position, le système 

favorise le capteur de pression pour les déplacements dans l’axe de z et, pour les deux autres, 

ils sont déterminés en effectuant des calculs d’intégrale des vitesses linéaires sur les trois axes 

mesurés par le DVL. 
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Figure 5 Présentation des entrées du proc_nav dans Simulink 

 

 

5.2.1 Cas d’utilisation IMU + DVL 

Le principe le de ce cas d’utilisation, qui est le cas d’utilisation actuel pour l’AUV8.1, est de 

montrer une importance significative envers les mesures des capteurs IMU et DVL dans l’EFK 

parce que ces derniers sont les sources d’une bonne partie des treize états du sous-marin sortie 

par l’EFK. Cette approche est sur lequel le système initial a été conçu pour et il est fiable en 

temps d’opérations normal, d’où moins pour la compétition auquel le sous-marin participe. 
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5.2.2 Cas d’utilisation IMU + IMU 

Le cas d’utilisation IMU + IMU représente une nouvelle approche intéressante pour le système. 

Il a été introduit après l’acquisition de caméras stéréoscopiques de Stereolabs : la ZED Mini 

pour l’AUV8.1 et la ZED2i pour le LITE1. Les deux caméras possèdent des IMUs intégrés 

dont le système de contrôle pourrait bénéficier. Elles offrent une source supplémentaire pour 

les états mesurés par l’IMU principale, permettant ainsi d’améliorer la précision et, 

indirectement, la performance globale du système. Ce cas d’utilisation vise à démontrer le 

fonctionnement du système de contrôle en absence du DVL à cause des deux raisons 

suivantes : la fréquence de données provenant du DVL n’est pas consistante et le nouveau 

prototype, le LITE1, ne possède pas de DVL. Donc, la source des vitesses linéaires 

proviendrait des accélérations linéaires fournies par les deux IMUs, plutôt que par le DVL, en 

effectuant un calcul d’intégration sur les mesures de l’accéléromètre du capteur et une double 

intégration pour en déduire la position par rapport au temps.  

5.2.3 Cas d’utilisation IMU + IMU + DVL 

Ce cas d’utilisation est la combinaison des deux cas d’utilisation en utilisant les 3 capteurs 

rigoureusement dans le filtre de Kalman étendu. C’est une approche seulement possible avec 

l’AUV8.1 parce qu’il possède les trois composants nécessaires. Elle est intéressante comme 

approche parce que, en théorie, la possibilité d’avoir des redondances dans le système rendrait 

le système de contrôle beaucoup plus robuste que le système actuel. En effet, comparé aux 

sources des mesures définies dans le Tableau 1, l’implémentation suivante vient ajouter une 

source additionnelle de données pour chaque type d’état du sous-marin.  

 



37 

   

 

5.3 Implémentation actuelle de proc_control (MPC)  

Actuellement, le contrôle reçoit en entrée 13 états qui correspondent à un objectif à atteindre. 

Cet état est généré par un autre programme qui est responsable de diviser chaque mouvement 

en plusieurs mouvements plus courts afin de tracer une trajectoire. Ce sont ces plus petits 

déplacements qui sont ensuite envoyés au contrôle. Une fois que l’EKF a calculé les 13 états 

actuels, ceux-ci sont envoyés au MPC. Celui-ci compare ensuite ces données à l’objectif, puis 

calcule les prochains déplacements nécessaires pour atteindre l’objectif. Le MPC prend 

également en entrée les constantes physiques du sous-marin, comme la position des moteurs, 

le centre de masse et de poussée et l’inertie entre autres. Ces constantes sont utilisées afin de 

prédire la réaction du sous-marin afin de prédire les déplacements futurs. Les forces que doit 

appliquer chaque moteur sont également calculées, puis transformées en signal à envoyer aux 

moteurs. Les forces calculées sont également renvoyées au EKF afin qu’elles soient incluses 

dans le prochain calcul des états actuels.  

5.4 Intégration idéale du VSLAM dans l’EKF  

5.4.1 Données idéales du VSLAM  

Idéalement, l’algorithme VSLAM fonctionne parfaitement et retourne les 13 états du contrôle 

avec une très grande précision et aucune erreur. Ces données peuvent donc directement être 

utilisées dans le filtre de Kalman étendu avec des covariances très faibles, car elles seraient 

plus précises que les capteurs actuels. Les données les plus importantes sont la position en X 

et Y ainsi que la rotation en Z, car c’est sur ces états que la dérive est présente. Avec un 

VSLAM idéal, ces données seraient corrigées, car l’algorithme fourni des données de position 

et d’orientation qui permettent de corriger la dérive déjà présente.  
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5.4.2 Modifications idéales de l’EKF pour intégrer le VSLAM  

Avec un algorithme VSLAM idéal, l’intégration dans le filtre de Kalman étendu est très simple. 

Il faut simplement ajouter les 13 états retournés par VSLAM dans une entrée de l’EKF après 

avoir ajusté le référentiel de la caméra afin que les résultats soient sur le référentiel du contrôle.  

Pour cela, il faut d’abord ajuster les données de position en soustrayant les coordonnées de la 

caméra par rapport au centre du sous-marin aux données du VSLAM après avoir appliqué la 

rotation retournée aux coordonnées. Puisque le référentiel du VSLAM place l’axe Z vers le 

haut, il faut également inverser les rotations sur les axes Z et Y. Cela est fait en multipliant les 

valeurs associées du quaternion par -1. Pour les vitesses linéaires, en plus d’appliquer la même 

rotation, il faut également retirer les vitesses linéaires qui sont générées par les rotations et 

l’effet de levier à cause de la distance au centre du sous-marin. Ces vitesses sont calculées en 

fonction des vitesses de rotation autour des axes ainsi que des coordonnées de la caméra par 

rapport au centre du sous-marin. Les vitesses de rotation doivent uniquement être inversées en 

Y et en Z afin d’utiliser le référentiel du contrôle.  

 

Figure 6 Implémentation de l'ajustement du référentiel 

Puisque les données de l’algorithme seraient parfaites, les covariances associées seraient très 

basses afin qu’elles aient un grand impact sur la sortie de l’EKF.  
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5.4.3 Coût des modifications idéales  

Les couts d’une telle intégration sont très faibles, puisque le système EKF-MPC est déjà en 

place. L’ajout des données du VSLAM dans le filtre de Kalman étendu est très simple et 

puisque les données sont parfaites, les covariances peuvent être très basses sans avoir besoin 

de faire plusieurs tests afin de déterminer les bonnes valeurs. 

5.5 Intégration réaliste du VSLAM dans l’EKF  

5.5.1 Données réelles sélectionnées du VSLAM  

En réalité, les données provenant du VSLAM ne peuvent pas être considérées comme parfaites. 

En effet, l’algorithme se base sur les changements détectés par la caméra. Dans des conditions 

réelles, il est possible qu’aucun changement significatif ne soit enregistré par le VSLAM, ce 

qui entraine des erreurs dans les données envoyées au filtre de Kalman.  

5.5.2 Changement réaliste de l’EKF pour intégrer le VSLAM  

Intégration réaliste est très proche de l’intégration idéale, puisqu’il suffit également d’ajouter 

les données du VSLAM en entrée au EKF après avoir ajusté le référentiel. Cependant, puisque 

les données sont imparfaites, les covariances doivent être ajustées afin de prendre en compte 

l’imprécision de chacun des 13 états qui sont renvoyés par l’algorithme. L’ajustement de ces 

covariances est difficile, car il n’est pas possible d’obtenir une valeur de façon mathématique. 

La meilleure façon de faire consiste à essayer différentes valeurs afin de trouver celles qui 

donnent les meilleurs résultats. 

5.5.3 Risques possibles et calibrations nécessaires  

Ces essais peuvent être longue et l’accès à une piscine étant difficile, il est possible que le 

temps de test disponible ne soit pas suffisant pour déterminer les meilleures covariances 
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possibles. Il faut aussi potentiellement calibrer le VSLAM dépendant des performances 

observées. Ces ajustements prennent également du précieux temps de test, il faut donc limiter 

le plus possible les pertes de temps.  

5.6 Impacts sur le MPC  

Ce projet n’a aucun impact sur la partie MPC du contrôle. En effet, seul le filtre de Kalman est 

impacté. Après que celui-ci a calculé les 13 états actuels, ceux-ci sont envoyés au MPC afin 

de calculer les déplacements futurs. Puisque les données du VSLAM vont dans l’EKF, elles 

ont uniquement un impact sur le calcul de l’état actuel, ce qui n’impacte aucunement le MPC.   

5.7 Impacts attendus sur la dérive 

Puisque l’algorithme VSLAM retourne les 13 états du contrôle, toutes les valeurs de celui-ci 

devraient être corrigées en cas de dérive.  En supposant que VSLAM soit en mesure de suivre 

les déplacements et les rotations du sous-marin, toute la dérive générée par les pertes de 

données du DVL sera corrigée par les données de vitesse linéaire et de position de VSLAM et 

la dérive causée par l’IMU sera corrigée par la rotation fournie par l’algorithme. 



 

   

 

CHAPITRE 6 

RÉSULTATS 

6.1 Tests à sec 

 

Figure 7 Position du sous-marin vue du dessus lors du test à sec 1 

La première Figure 7 montre la position retournée par les deux sorties du VSLAM, vis_slam 

et tracking_slam, ainsi que la position calculée par le contrôle auv_states durant le premier test 

à sec. Le mouvement effectué est un déplacement vers l’avant de 6m, une rotation de 90 degrés 

vers la gauche, un mouvement de 8m vers l’avant, une rotation de 180 degrés dans le sens 

antihoraire, un autre déplacement de 8m, une rotation vers la droite de 90 degrés, un 

mouvement de 6m vers l’avant et une rotation de 180 degrés dans le sens antihoraire. Les 

données montrent que le premier déplacement a bien été mesuré par le VSLAM. La première 

rotation est visible sur le graphique, mais n’a pas le même angle que la réalité. Le déplacement 

suivant ainsi que le demi-tour et le mouvement vers le point de la première rotation sont 
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relativement bien mesurés, mais la position du sous-marin est décalée d’environ un mètre par 

rapport à la position de la première rotation, alors que ce n’est pas le cas en réalité. La rotation 

de 90 degrés vers la droite, le mouvement de 6m vers l’avant ainsi que la rotation finale sont 

également bien détectés. Il est important de noter que l’axe y est inversé, car le référentiel du 

sous-marin est inversé. Ceci s’appliquera à plusieurs graphiques dans ce chapitre. 

À partir de la première rotation, des pics sont visibles dans les données d’auv_states. Ceux-ci 

sont causés par un décalage entre l’orientation de l’IMU et du VSLAM. Puisque les données 

du DVL ne sont pas disponibles lors des tests à sec, le calcul de position se base entièrement 

sur la vitesse calculée par le VSLAM. Cependant, ce calcul s’effectue à plus haute fréquence 

que le VSLAM, ce qui oblige le contrôle à utiliser les dernières données en attendant les 

nouvelles données. Bien que la vitesse vienne uniquement du VSLAM, l’orientation est 

également fournie par l’IMU. En absence de données du slam, le contrôle se base entièrement 

sur ce capteur afin de connaitre son orientation, mais utilise les dernières données du VSLAM 

pour les autres informations, comme la position et la vitesse. Ces pics pointent donc dans la 

vraie orientation du sous-marin, puis sont ramenés à la position du VSLAM lorsque de 

nouvelles données sont reçues. Leur taille et position aléatoire sont dues au fait que ce 

phénomène n’arrive que lorsque le VSLAM ne fournit pas d’informations, ce qui est dépendant 

des éléments visibles par la caméra.   
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Figure 8 Orientation en Z en fonction du temps lors du test à sec 1 

La Figure 8 montre l’orientation du sous-marin pendant le test. Au début, toutes les données 

sont proches de zéro. À environ 15 secondes, le sous-marin fait une rotation de 90 degrés. 

L’IMU ainsi que auv_states mesure correctement celle-ci, puisque les deux se rapprochent de 

0.707 qui est la valeur d’une rotation de 90 degrés dans un quaternion. Cependant, le VSLAM 

ne mesure pas correctement le changement d’orientation, ce qui cause une différence entre les 

deux valeurs. À partie de ce moment, des pics verticaux sont visibles dans les données 

d’auv_states. Ceux-ci sont causés par la réception des données du SLAM par le contrôle. 

Celui-ci tente d’inclure ces informations très différentes dans le calcul de la rotation, mais, 

puisque les covariances du VSLAM sont beaucoup plus élevées que celles de l’IMU, la rotation 

retourne rapidement à la valeur de la centrale inertielle. Cela peut également être vu dans les 

données au-delà de 30 secondes. Après une rotation de 180 degrés, la valeur du VSLAM 

devient plus basse et plus proche de celle de l’IMU. Cela a pour effet de réduire la taille des 

pics et d’inverser leur sens.   
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Figure 9 Position du sous-marin retournée par VSLAM vue du dessus lors du test à sec 2 

L’objectif du deuxième test à sec était d’observer l’impact d’un environnement connu par 

rapport à un environnement inconnu. Pour cela, le sous-marin a effectué le même trajet deux 

fois. Celui-ci consistait en un rectangle de 5.5 mètres de long sur 2.5 mètres de large. Lors du 

premier trajet, le sous-marin a tout d’abord été déplacé autour du parcours afin d’avoir un 

nuage point initial avant de commencer le trajet. Les résultats montrent que, lors de ce 

déplacement, l’algorithme VSLAM a bien réussi à suivre les déplacements du sous-marin avec 

peu d’erreurs. Lors du deuxième trajet, le nuage de point a été réinitialisé juste avant de 

commencer le déplacement. Les données montrent que celui-ci n’a pas bien été évalué par le 

VSLAM. Les données diffèrent à partir de la première rotation et la position finale est à 

plusieurs mètres de la position initiale.  
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6.2 Tests en piscine 

Tous les tests en piscine ont été réalisé au Complexe aquatique Michel-Leduc (Aquadôme).  

 

Figure 10 Piscine de test à Aquadome (https://inscriptionsaquadome.ca/bain-libre) 

Le bassin utilisé mesure 25 mètres de long sur 12 mètres de large et mesure 3,4 mètres de 

profondeur avec une pente d’un côté. Lors des tests, le bassin est entièrement réservé par 

S.O.N.I.A., il n’y a donc personne d’autre dans la piscine. Lorsque le sous-marin est dans l’eau, 

il y a toujours un membre du club qui nage à côté afin de s’assurer qu’il ne rentre pas en 

collision avec un mur en cas de problème.   

6.2.1 Sans marqueurs visuels 

Tous les résultats présentés dans cette catégorie ont été obtenus lors de tests dans une piscine 

vide, c’est-à-dire sans objets supplémentaires dans le bassin. Les seuls éléments visibles lors 

de ce test étaient les murs et le fond ainsi que les lignes de natation flottantes à la surface. Ce 

manque de marqueurs visuels rend le suivi de la position difficile pour VSLAM, ce qui 

explique l’instabilité des résultats. 
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Figure 11 Positions retournées par VSLAM avec le sous-marin statique 

Le premier test effectué lors du premier essai en piscine fut d’enregistrer les données envoyées 

par VSLAM sans qu’il soit connecté au contrôle. Deux enregistrements ont été pris, le premier 

avec les moteurs éteints et le sous-marin flottant immobile à la surface et le deuxième avec les 

moteurs actifs et le contrôle essayant de conserver sa position actuelle. Dans les deux cas, 

aucun mouvement significatif n’a été observé durant les enregistrements. Pourtant, les données 

montrent des déplacements chaotiques qui font parfois plusieurs mètres de long, ce qui montre 

que VSLAM ne semble être capable de suivre les mouvements du sous-marin. Un nouveau 

phénomène qui n’était pas visible dans les tests à sec est aussi très visible dans ces deux 

graphiques : vis_slam et tracking_slam ne retournent pas les mêmes résultats. Lors des tests à 

sec, ces 2 sorties étaient toujours très proches l’une de l’autre, au point que seulement 

tracking_slam est visible sur les graphiques précédents. Mais dans les données de ce test, il est 

très clair que les deux sorites du VSLAM retournent des résultats complètement différents. La 

position initiale et finale est différente et il n’y a pas de corrélation entre les mouvements des 

2 sorties.   
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Figure 12 Position du sous-marin vue du dessus lors du test en piscine 1 

Ce graphique présentes les résultats du test en mouvement. Comme pour les données 

précédentes, l’algorithme VSLAM n’est pas connecté au contrôle, il n’a donc pas d’impact sur 

la position du sous-marin. Pour ce test, le sous-marin devait effectuer une spirale avec des 

angles de 90 degrés afin d’observer la position enregistrée par le VSLAM lors des 

déplacements. Ces mouvements sont bien visibles dans les données d’auv_states, mais comme 

lors du test précédent, VSLAM est incapable de suivre les déplacements du sous-marin. Ces 

résultats montrent l’importance d’avoir des marqueurs visuels supplémentaires dans la piscine 

lors des tests.   

6.2.2 Avec des marqueurs visuels 

Lors de ces tests, des obstacles ont été ajoutés dans la piscine afin d’améliorer les performances 

du VSLAM. Ces obstacles étaient statiques et très visibles sur les parois de la piscine. Ceux-

ci sont également les obstacles utilisés lors de la compétition à laquelle S.O.N.I.A. participe 

chaque année et représente donc bien les conditions réelles d’utilisation.   
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Figure 13 Image d'un obstacle dans la piscine prise depuis la caméra du sous-marin 

 

Figure 14 Orientation en Z en fonction du temps lors du test en piscine 2 

Ce graphique présente les données d’orientation du sous-marin sur l’axe Z. Au départ, lors des 

tests, le sous-marin se trouve face à l’obstacle mentionné précédemment. Après quelques 

secondes, il effectue une rotation de 45 degrés sur l’axe Z, ce qui correspond à une valeur de -

0.383 pour l’axe Z du quaternion. Ce mouvement change le champ de vision de la caméra, 
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mais l’obstacle reste visible, ce qui permet à VSLAM de suivre relativement bien la rotation. 

Par la suite, le nageur vient perturber le sous-marin en poussant dessus, ce qui vient causer des 

rotations involontaires. Celles-ci sont clairement visibles dans les données par les pics qui 

apparaissent dans toutes les données.  

Bien qu’il y ait clairement une corrélation entre les trois sources de données, une divergence 

entre tracking_slam et les autres valeurs sont également visibles. Celle-ci commence dès la 

première rotation du test, mais s’amplifie beaucoup après les mouvements. Selon les résultats 

obtenus, il est rapidement ressenti que vis_slam fournit des données plus précises à court terme 

et envoie des informations plus fréquemment que tracking_slam. Pour ces raisons, c’est 

vis_slam qui a été choisi pour être intégré dans le contrôle. C’est pour cette raison que 

tracking_slam ne sera pas présenté dans les prochains graphiques. 

 

Figure 15 Position en X en fonction du temps pendant le test en piscine 3 

Des résultats similaires peuvent être observés pour la position sur l’axe X lors du test suivant 

qui a eu lieu dans des conditions similaires. Au début de ce test, le sous-marin regarde 

l’obstacle présenté plus haut. Dans les 20 premières secondes, les moteurs ne sont pas actifs et 

c’est le nageur qui déplace le sous-marin. À 20 secondes, les moteurs sont allumés et le sous-
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marin se stabilise. Puis, 74 secondes après le début du test, le sous-marin fait une rotation de 

90 degrés, ce qui fait sortir l’obstacle du champ de vision de la caméra. À partir de ce moment, 

des pics sont visibles dans les données d’auv_states, comme pendant le test à sec 1. La cause 

est la même, c’est-à-dire que VSLAM n’a pas mesuré correctement la rotation et que la valeur 

d’orientation en Z de vis_slam est différente de celle de la centrale inertielle.   
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CHAPITRE 7 

ANALYSE 

7.1 NVIDIA Isaac ROS Visual SLAM 

7.1.1 Intégration de l’IMU 

Comme mentionné précédemment dans ce rapport, l’utilisation de la bibliothèque NVIDIA 

Isaac ROS Visual SLAM représentait le meilleur scénario pour l’implémentation du VSLAM 

dans le cadre de ce projet. Il semble toutefois qu’après les tests réalisés, ce n’ait pas été le 

meilleur choix. La description de configuration indique que l’activation du paramètre 

enable_imu_fusion devrait informer la bibliothèque d’utiliser les données de l’IMU intégré 

dans la caméra lors du calcul de l’odométrie en sortie. Toutefois, comme le montre l’équation 

suivante, l’algorithme ne semble pas tenir compte de l’IMU. Cela modifie fondamentalement 

les attentes envers le système, puisqu’il repose alors exclusivement sur les données 

stéréoscopiques visuelles. Ce point est davantage expliqué dans Korovko et al. (2025), où 

l’équation suivante illustre la manière dont l’estimation de pose visuo-inertielle est réalisée : 

𝑆𝑖−1, 𝑆𝑖 = 

argmin [||𝑟𝑖𝑚𝑢(𝑆𝑖−1, 𝑆𝑖)||
∑ 𝐼𝑀𝑈 

 

2

+ ∑||𝑟𝑟𝑒𝑝𝑟(𝑆𝑖−1, 𝑆𝑖)||∑ 𝑉𝐼𝑆 
 

2
1

𝑗=0

+ ||𝑟𝑝𝑟𝑖𝑜𝑟(𝑆𝑖−1, 𝑆𝑖)||
∑ 𝑝  

2

] 

Équation 1 

Si 𝑟repr ≈ 0, ce qui représenterait une perte du flux visuel, nous devrions alors nous appuyer 

uniquement sur les données de l’IMU. En utilisant cette équation, l’algorithme corrigerait les 

données d’odométrie afin de minimiser l’erreur détectée par l’IMU selon la matrice de 

covariance ΣIMU. Si l’équation se réduit à n’utiliser que ∥ 𝑟imu(𝑆𝑖−1, 𝑆𝑖) ∥ΣIMU

2 , l’erreur 



52 

   

 

s'accumule très rapidement, ce qui amène l’algorithme à ignorer complètement les données et 

à cesser de publier. 

En fin de compte, l’algorithme nécessite un flux visuel pour fonctionner, celui-ci servant de 

lien entre les poses calculées et le monde réel. Le problème fondamental rencontré est 

davantage lié à la qualité du flux visuel qu’à sa disponibilité. 

7.1.2 Tracking ou Vis 

Lors de l’utilisation de la bibliothèque NVIDIA Isaac ROS Visual SLAM, la documentation 

en ligne pour la version 2.1 ne définit que les topics ROS liés à tracking_slam et non ceux liés 

à vis_slam. En examinant le code source ainsi que la version la plus récente de la 

documentation, il a été déterminé que tous les topics associés à vis_slam étaient considérés 

comme des topics de visualisation. Cela est suggéré dans la documentation en ligne d’Isaac 

ROS cuVSLAM (« cuVSLAM — Isaac ROS », s.d.) et défini de manière plus explicite dans 

(Mur-Artal & Tardos, 2017). Ce comportement correspond bien à celui qui a été observé lors 

des tests. 

Tracking 

Tout ce qui provient du tracking contient les données brutes calculées en arrière-plan du 

VSLAM, ce qui inclut la fusion de capteurs et la fermeture de boucle (loop closure). La 

principale raison pour laquelle l’information provenant de cette source est lente et semble « en 

retard » par rapport au reste est qu’un volume de traitement beaucoup plus important est 

nécessaire pour la générer. En fin de compte, ces informations ne sont pas adaptées à ce projet 

en raison de leur faible fréquence et, puisqu’elles se corrigent continuellement via la fermeture 

de boucle, elles sont sujettes à des sauts dans les données. 

Visualiseur 
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Tout ce qui provient de vis est considéré comme de l’odométrie visuelle. Ces informations sont 

générées par le front-end de l’algorithme SLAM et sont conçues pour l’évaluation visuelle. 

Cela signifie qu’elles n’appliquent pas en continu les optimisations que l’on retrouve dans le 

tracking, bien qu’elles intègrent la fermeture de boucle et certaines corrections de manière 

asynchrone. Étant donné que ces données sont conçues pour l’évaluation visuelle, leur 

fréquence est plus élevée que celle du tracking, et les corrections y sont intégrées 

progressivement au fil du temps plutôt que de manière directe. Ce comportement les rend 

idéales pour le projet, où l’intégration avec un EKF est nécessaire. 

Les informations définissant ces deux sources concordent également avec les résultats observés 

lors des différents tests. 

 

7.2 Impact des données visuelles répétitives et de la qualité des images 

Lors de l’analyse des résultats obtenus au fil de différents tests, les données visuelles se sont 

révélées systématiquement incohérentes dans l’eau en l’absence d’obstacles, tandis qu’elles 

étaient nettement plus stables sur terre. L’hypothèse initiale supposait des problèmes liés à 

l’intégration de l’IMU dans l’algorithme VSLAM, mais cela a été infirmé à la section 7.1.1. 

En ce qui concerne l’algorithme, la conclusion a été que la qualité du flux visuel entrant dans 

le VSLAM avait un impact significatif. 

Durant les tests terrestres, l’environnement présentait des structures variées, ce qui permettait 

au mécanisme de fermeture de boucle de fonctionner comme prévu, menant à une localisation 

adéquate. Plus précisément, les observations montrent que la qualité de la localisation lors 

d’une boucle est liée à la qualité de la cartographie initiale de l’espace avant l’exécution de la 

boucle, comme observé lors du test à sec 2. 

Au départ, il était difficile de comprendre pourquoi le prototype refusait d’être stable dans 

l’eau. En utilisant des outils comme RVIZ2 pour visualiser le nuage de points généré par le 
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module de cartographie du VSLAM, les données montraient qu’aucune position ou localisation 

cohérente ne pouvait être extraite à partir des observations. En d’autres termes, l’algorithme 

VSLAM éprouvait des difficultés à définir son environnement de manière stable. 

Bien que cette conclusion ait été atteinte, deux facteurs en sont à l’origine : la répétition de 

motifs et la qualité de la vidéo. 

 

7.2.1 Motifs dans les données visuelles 

L’un des problèmes liés à la localisation, particulièrement dans les systèmes SLAM basés sur 

des graphes, provient de la manière dont ils utilisent les keyframes observées et comparent les 

positions 3D enregistrées dans leur mémoire. Lorsqu’il s’agit de données complexes ou 

présentant des variations uniques, ce mécanisme fonctionne très bien. Même dans des zones 

qui se répètent, si cette répétition ne concerne qu’une petite région d’une carte plus vaste, 

l’algorithme parvient généralement à se localiser correctement. Les difficultés apparaissent 

lorsque la zone répétitive constitue une portion significative de la carte existante. Dans ce cas, 

le comportement observé est que l’algorithme tente de se localiser là où il croit se trouver et 

commence à réécrire la carte en conséquence. 

Le test à sec 2 illustre parfaitement ce phénomène, car la zone utilisée est un corridor bordé de 

grandes portes de garage. En avançant dans ce corridor, les parois se répètent 

approximativement tous les cinq mètres. Sans prendre le temps de cartographier en détail la 

zone de départ, l’algorithme perd sa position dès que le prototype se tourne vers l’une des 

portes de garage. 

Cet effet est amplifié lors des essais en piscine. Le sol et les parois présentent des lignes 

répétitives, et les murs sont entièrement carrelés de blanc. Ainsi, chaque fois que le prototype 

tente de cartographier son environnement, le VSLAM éprouve de grandes difficultés à 

déterminer sa position dans la carte. Même la tâche de tracer manuellement la carte de 
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l’environnement en incluant au moins deux murs n’est pas utile, car le bruit visuel empêche la 

détection des keyframes significatives. La seule situation où la cartographie devient semi-stable 

est lorsqu’un obstacle contrastant est ajouté, c’est-à-dire lorsqu’un objet est placé de manière 

à offrir un arrière-plan clairement distinct en couleur, comme lors du test en piscine 2. 

Lors de l’un des derniers essais, le prototype s’est montré beaucoup plus stable lorsqu’il était 

orienté directement vers l’obstacle (dans ce cas, la porte présentée dans la Figure 13 Image 

d'un obstacle dans la piscine prise depuis la caméra du sous-marinFigure). Il faut souligner que 

l’algorithme VSLAM fonctionnait mieux lorsque l’environnement local n’avait pas été 

largement cartographié. Cela s’explique par le fait que, durant la cartographie, dès que le 

prototype ne regardait plus l’obstacle, il perdait son point de référence dans un environnement 

ambigu. En revenant vers l’obstacle, il le cartographie à nouveau au lieu de se relocaliser, ce 

qui entrainait la présence de plusieurs obstacles sur la carte mémoire, ce qui cause une 

confusion lorsque VSLAM tente de positionner le sous-marin. 

Globalement, cela démontre que le VSLAM dépend fortement de la présence de plusieurs 

repères uniques qu’il peut distinguer de l’environnement, particulièrement lorsqu’il repose 

uniquement sur les données visuelles. Malheureusement, ce n’était pas le cas pour l’ensemble 

des tests réalisés en milieu aquatique, mais il était essentiel de mettre en évidence cette limite, 

car le cas d’usage final (la compétition à laquelle participe le club étudiant S.O.N.I.A.) se 

déroule également dans une piscine présentant un environnement répétitif. Cela signifie que 

l’implémentation finale doit être capable de fonctionner même lorsque les keyframes sont 

ambiguës. 

 

7.2.2 Qualité des images 

Bien que les motifs observés aient un impact important sur les résultats, la qualité des données 

joue également un rôle majeur. Cela est suspecté d’être le principal facteur contribuant au bruit 
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dans le nuage de points, ainsi qu’au fait que le VSLAM ne détecte pas davantage de détails ou, 

dans certains cas, génère des données erronées. Cette situation est due au fait que le flux visuel 

provient d’un milieu aquatique, ce qui rend les images légèrement brumeuses et crée un effet 

de brouillard lorsque l’on observe des éléments situés à plus de quelques mètres. L’éclairage 

de l’environnement a également un impact, tant sur la visibilité sous l’eau que sur la création 

de réflexions dès que la caméra est orientée vers la surface. La couleur, à la fois celle de 

l’environnement et celle captée par la caméra, constitue un autre facteur qui influence la qualité 

des résultats. 

Étant donné que le flux visuel n’est pas aussi clair que dans l’air, l’algorithme peine à définir 

des keyframes et, même lorsqu’il y parvient, il a du mal à les re-identifier, car leur qualité varie 

selon la distance et l’éclairage. De plus, il est connu qu’il peut confondre des keyframes avec 

leurs reflets; un exemple notable est celui de l’obstacle en forme de porte, lors duquel le 

prototype oscillait en roulis. L’hypothèse avancée est que le VSLAM alternait continuellement 

entre l’obstacle réel et son reflet comme référence visuelle, mais les données enregistrées ne 

permettent pas de confirmer ou infirmer cette hypothèse. 

Cela démontre que l’environnement, autant à l’intérieur qu’à l’extérieur, exerce une influence 

significative sur la capacité de l’algorithme à comprendre son environnement. Il est encore une 

fois essentiel de considérer cette problématique dans le contexte de S.O.N.I.A. et de leur 

compétition, qui se déroule à la fois dans une piscine standard et en extérieur. Cela signifie que 

la qualité de l’eau, le moment de la journée et la couverture nuageuse influencent tous les trois 

le processus. 

7.3 Impact de l’odométrie visuelle sur le contrôle du mouvement avec EKF 

Bien que la capacité à cartographier et mémoriser l’environnement soit importante, son impact 

sur le contrôle est tout aussi crucial, voire plus. L’objectif de ce projet est de réduire 

l’accumulation de dérive observée dans le contrôle existant. Les résultats montrent toutefois 
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que cela n’est pas aussi simple que ce qui avait été initialement hypothèse. Plusieurs facteurs 

liés à l’EKF dans le contrôle influencent les résultats, en particulier dans le contexte aquatique. 

Parmi les 13 états définis, les entrées originales n’affectent que 11 d’entre eux. Les valeurs de 

position en x et y sont inférées. De plus, les valeurs de vitesse linéaire provenant du DVL ne 

sont pas fournies de manière constante en raison des limitations du capteur. Cela indique que, 

pour l’EKF avant l’intégration du VSLAM, l’orientation et les vitesses angulaires reposent sur 

l’IMU, les vitesses linéaires proviennent du DVL lorsque les données sont disponibles, et la 

position en z est basée sur le capteur de profondeur. Deux facteurs contribuent à l’accumulation 

de dérive : l’intermittence du DVL et, puisque l’IMU dépend d’un magnétomètre, un léger 

décalage de lacet (yaw) apparaissent avec le temps (variant selon les conditions 

environnementales). 

L’introduction des 13 états complets issus de l’odométrie visuelle a un impact majeur sur les 

valeurs de position en 𝑥 et 𝑦, puisqu’elles deviennent désormais la référence (ground truth) 

dans l’EKF pour ces valeurs. Pour toutes les entrées de capteurs, l’impact des covariances 

définies est important, car il détermine dans quelle mesure l’EKF fait confiance à ces valeurs 

de référence. Voici les covariances utilisées dans tous les tests, à l’exception du dernier test en 

eau.  
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∑𝐼𝑛𝑖𝑡𝑖𝑎𝑙 =

[
 
 
 
 
 
 
 
 
 
 
 
 
10 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0 0
0 0 0 10 0 0 0 0 0 0 0 0 0
0 0 0 0 10 0 0 0 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 0 10 0 0 0 0 0 0
0 0 0 0 0 0 0 10 0 0 0 0 0
0 0 0 0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0 0
0 0 0 0 0 0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 0 0 0 0 10]

 
 
 
 
 
 
 
 
 
 
 
 

 

Équation 2 

∑𝐼𝑀𝑈 =

[
 
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1]

 
 
 
 
 
 

 

Équation 3 

∑𝐷𝑉𝐿 = [
0.1 0 0
0 0.1 0
0 0 0.1

] 

Équation 4 

∑𝐷𝐸𝑃𝑇𝐻 = [
0.01 0
0 0.1

] 

Équation 5 
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∑𝑆𝐿𝐴𝑀1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
10 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 0 0 0 5 0 0 0
0 0 0 0 0 0 0 0 0 0 5 0 0
0 0 0 0 0 0 0 0 0 0 0 5 0
0 0 0 0 0 0 0 0 0 0 0 0 5]

 
 
 
 
 
 
 
 
 
 
 
 

 

Équation 6 

Avec le dernier test utilisant la matrice suivante : 

∑𝑆𝐿𝐴𝑀2 =

[
 
 
 
 
 
 
 
 
 
 
100 0 0 0 0 0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 0 0 0 0 0 0
0 0 100 0 0 0 0 0 0 0 0 0 0
0 0 0 100 0 0 0 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0 0 0 0
0 0 0 0 0 100 0 0 0 0 0 0 0
0 0 0 0 0 0 100 0 0 0 0 0 0
0 0 0 0 0 0 0 100 0 0 0 0 0
0 0 0 0 0 0 0 0 100 0 0 0 0
0 0 0 0 0 0 0 0 0 100 0 0 0
0 0 0 0 0 0 0 0 0 0 100 0 0
0 0 0 0 0 0 0 0 0 0 0 100 0
0 0 0 0 0 0 0 0 0 0 0 0 100]

 
 
 
 
 
 
 
 
 
 

 

Équation 7 

 

Lors de plusieurs tests en eau (tous utilisant la matrice ΣSLAM1
), il a été observé que le prototype 

perd rapidement le contrôle en raison d’informations contradictoires provenant à la fois des 

capteurs internes et de l’odométrie visuelle (VO). Même avec ces covariances, l’influence de 

la VO avait toujours un impact significatif sur les états résultants de l’AUV. La variabilité de 

l’impact de la VO découle de l’instabilité observée de l’algorithme VSLAM dans l’eau. 
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L’objectif final était, au minimum, d’ajuster l’orientation retournée par VSLAM pour qu’elle 

présente des covariances similaires à celles de l’orientation de l’IMU. Malheureusement, il 

reste nécessaire d’améliorer la stabilité de l’algorithme. La dernière série de tests effectués en 

eau a utilisé la matrice de covariance ΣSLAM2
. L’objectif était de tenter d’atténuer l’effet de la 

VO sur l’EKF du contrôle. Les résultats n’ont été mitigés, avec aucune différence notable 

observée dans les résultats.  

En fin de compte, la première étape consiste à créer un système capable de générer une VO 

fiable, plutôt que de se contenter d’utiliser des covariances pour compenser les instabilités ou 

les imprécisions.  
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CHAPITRE 8 

RECHERCHES FUTURES 

L’analyse a montré que les résultats n’ont pas permis d’atteindre les attentes initiales. En se 

basant sur l’ensemble des informations recueillies au cours de la recherche et des tests, voici 

les étapes qui seraient à suivre pour implémenter un algorithme VSLAM capable de 

fonctionner aux niveaux requis, en particulier sous l’eau. 

 

8.1 Implémentation alternative du VSLAM 

La raison d’avoir mis en œuvre l’infrastructure VSLAM existante via la bibliothèque NVIDIA 

Isaac ROS Visual SLAM reste pertinente compte tenu des contraintes et des informations 

disponibles au début de ce projet, mais il serait crucial d’explorer d’autres types 

d’implémentations. La principale limitation de la bibliothèque Isaac réside dans le manque de 

paramètres de configuration facilement accessibles et dans l’absence d’informations claires sur 

le pipeline de traitement. Dans ce contexte, adopter une approche plus « minimaliste » pourrait 

permettre de développer une solution offrant davantage de possibilités de configuration et 

d’ajustement des paramètres, idéale pour une utilisation sous l’eau. 

Le choix de continuer à utiliser un algorithme basé sur un graphe reste considéré comme la 

meilleure option, car il demeure globalement le plus stable. Une solution envisageable serait 

ORB-SLAM3 pour deux raisons principales : il s’agit d’une solution libre bien connue et elle 

constitue la référence utilisée par la bibliothèque Isaac pour comparer sa propre solution. Cette 

approche permettrait de conserver une logique d’utilisation similaire à l’implémentation 

existante. Le principal défi de cette approche réside à la fois dans les difficultés d’optimisation 

(aucune de ces solutions n’utilisant nativement le GPU) et dans l’effort nécessaire pour 

l’intégrer au réseau ROS2 existant. 
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8.1.1 Algorithmes SLAM incluant l’acoustique 

Dans un monde idéal, le meilleur choix serait de trouver un algorithme dédié à une utilisation 

sous-marine, incluant notamment ceux qui exploitent une entrée acoustique comme un sonar. 

Quelques exemples de ce type d’algorithmes sont le Visual-Inertial-Acoustic SLAM avec DVL 

(Huang et al., 2025), SVin2 (Rahman, Li et Rekleitis, 2019), et le SLAM utilisant un FLS (Li 

et al., 2018). 

Ces solutions fonctionnent en tirant parti des informations acoustiques. VIA-SLAM et SVin2 

sont tous deux conçus pour l’exploration sous-marine, VIA-SLAM étant particulièrement 

intéressant pour S.O.N.I.A., puisque le prototype principal est déjà équipé d’un DVL. 

L’approche FLS est également intéressante, notamment dans les situations de faible visibilité, 

car cet algorithme utilise un sonar comme principale source d’information. Il est conçu pour 

fonctionner même dans des environnements ambigus, tels que le site de la précédente 

compétition RoboSub, TRANSDEC à San Diego, Californie, États-Unis, où la visibilité était 

extrêmement réduite. 

Dans tous ces cas, la présence d’un capteur acoustique tel qu’un sonar est nécessaire pour que 

l’algorithme fonctionne. L’équipe S.O.N.I.A. prévoit d’intégrer un sonar sur le prototype 

AUV8.1, ce qui lui permettrait d’utiliser ces solutions. Malheureusement, aucun projet 

similaire n’est prévu pour le prototype LITE1, ce qui nécessite donc d’explorer d’autres 

solutions. 

8.1.2 Direct Sparse Visual Odometry 

Lors des discussions sur l’avenir des prototypes avec l’équipe S.O.N.I.A., ils ont exprimé un 

intérêt pour le remplacement des caméras actuelles par des caméras monoculaires plutôt que 

stéréo. La raison en est que l’IA utilisée par l’équipe rencontre des difficultés pour identifier 

les objets en raison du mélange des couleurs. L’idée est de passer à une caméra offrant de 
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meilleures capacités de détection des couleurs. Ce changement pourrait ouvrir la voie à une 

autre approche du SLAM : l’utilisation de Direct Sparse Visual Odometry, ou DSO (Engel, 

Koltun et Cremers, 2018). 

Seule, la DSO serait moins performante en environnement sous-marin, car elle ne détecte pas 

les caractéristiques comme les algorithmes mentionnés précédemment. Son principe repose sur 

l’analyse des variations de densité des pixels pour suivre l’environnement  (Engel, Koltun et 

Cremers, 2018). Cela permet à l’algorithme de suivre les changements même lorsque le flux 

visuel ne présente pas de caractéristiques significatives. Malheureusement, cela signifie aussi 

que lorsque l’environnement produit un flux visuel où la couleur et l’intensité des pixels restent 

similaires en permanence (comme sous l’eau) cette approche ne fournit pas de résultats 

concluants. L’intérêt réside donc dans son utilisation non pas isolée, mais intégrée à une chaîne 

de traitement. 

Il est fréquent d’utiliser plusieurs méthodes pour concevoir un algorithme global plus efficace, 

comme le VI-DSO (Stumberg, Usenko et Cremers, 2018), ou encore la solution complexe 

décrite par Fu et Lu (2025). Pour les prototypes de S.O.N.I.A., ce type de solution serait 

difficile, mais possible à intégrer dans un EKF existant ou un graphe de facteurs, tout en 

ouvrant la possibilité d’une navigation plus robuste et précise, surtout en cas d’évolution de la 

technologie des caméras. 

8.2 Prétraitement des données 

L’une des premières étapes de tout algorithme VSLAM basé sur un graphe est l’extraction de 

caractéristiques à partir d’une image. Dans de nombreux cas, on utilise un détecteur tel 

qu’ORB, SIFT ou SURF (Rublee et al., 2011). C’est à partir des résultats de ces 

caractéristiques détectées que l’algorithme global peut assembler la carte 3D utilisée pour la 

cartographie, puis pour la localisation. Cela signifie que si les données issues des images sont 

incohérentes ou de mauvaise qualité, tout algorithme VSLAM pur verra sa capacité de 
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performance réduite. Par conséquent, la recommandation proposée est d’introduire une étape 

de prétraitement avant que les images ne soient évaluées par les détecteurs de caractéristiques. 

8.2.1 Égalisation d’histogramme   

L’égalisation d’histogramme est une technique bien connue d’équilibrage des couleurs qui 

consiste à créer un histogramme du spectre de couleurs de l’ensemble de l’image, puis à 

rééquilibrer les couleurs pour qu’elles soient plus uniformes sur toute l’image (Patel, Maravi 

et Sharma, 2013). Cette méthode permet d’éclaircir les zones sous-exposées et d’assombrir les 

zones surexposées. 

Avec cette approche, les images conserveraient un spectre de couleurs constant et seraient 

beaucoup plus résistantes aux variations d’éclairage dans l’environnement. Par exemple, lors 

de tests en intérieur où l’éclairage est fixe dans certaines zones, ce qui crée des régions plus 

sombres, ou lors de tests en extérieur avec des nuages provocants des variations de luminosité. 

Alors que l’égalisation d’histogramme agit globalement sur l’image, la méthode CLAHE, 

Contrast Limited Adaptive Histogram Equalization, (Nguyen et al., 2020) est une approche 

beaucoup plus sûre et stable, notamment dans le cadre du VSLAM. En effet, elle minimise le 

risque de perte de détails liée aux corrections globales. 

 

8.2.2 Algorithme Retinex 

Il s’agit d’une approche plus complexe dans laquelle des algorithmes comme Retinex (Nguyen 

et al., 2020) ont pour objectif d’analyser les images du point de vue humain. Cela est réalisé 

en séparant l’image en ses composantes d’illumination et de réflectance. À partir de ces 

informations, l’algorithme tente de restaurer les couleurs naturelles de l’image, notamment 

dans des environnements où l’éclairage est complexe, grâce à sa capacité à équilibrer la 

lumière. 
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Contrairement à certains autres algorithmes complexes, des recherches ont démontré que 

Retinex est particulièrement efficace pour l’analyse sous-marine (Aguirre-Castro et al., 2022). 

Cela s’explique par sa capacité de correction adaptative des couleurs, permettant de résoudre 

des problèmes tels que le faible contraste ou la distorsion des couleurs. 

Pour ce projet, l’utilisation de Retinex aurait un impact important sur les résultats, étant donné 

que la qualité des couleurs de l’environnement ne sera jamais stable. De plus, puisque cet 

algorithme est libre, il existe déjà des implémentations que l’équipe pourrait utiliser pour 

accélérer l’intégration. 

8.2.3 Exemple de pipeline 

Voici une présentation d’un exemple de chaîne de traitement (pipeline) qui pourrait être utilisée 

et qui inclut les algorithmes présentés. 

 

Figure 16 Preprocessing Pipeline 

En parcourant la Figure, voici les explications pour chaque étape : 

1. Cette étape est gérée directement par la calibration de la caméra choisie. Son rôle est 

de corriger toute distorsion générée par la présence dans l’eau et du hublot en acrylique. 

2. Ensuite, il est recommandé de convertir l’image dans un espace de travail plus robuste, 

tel que le luminance (RGB → YCrCb). En effet, la plupart des techniques qui affectent 
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le contraste fonctionnent mieux sur la luminance que sur chaque canal RGB, ce qui 

permet d’éviter des décalages de couleur déstabilisants. 

3. L’application d’un filtre de débruitage intermédiaire tout en préservant les contours est 

très utile pour minimiser l’impact des fausses caractéristiques qui peuvent être générées 

en raison de la nature variable de l’eau. Dans l’amélioration sous-marine, l’objectif est 

d’inclure du débruitage et un lissage afin de maintenir la réflectance stable (Fu et al., 

2014). 

4. Cette étape correspond à l’application de l’algorithme Retinex présenté précédemment. 

L’objectif est de corriger l’illumination et de récupérer toute couleur ou visibilité 

perdue. Il est extrêmement important que cette correction soit appliquée sur la 

luminance et non sur l’image RGB standard. 

5. L’algorithme CLAHE est ensuite appliqué sur la luminance afin que les variations 

locales de contraste soient corrigées et permettent de révéler les textures pouvant aider 

à la détection des caractéristiques. 

6. Enfin, comme l’implémentation actuelle du VSLAM attend une image au format RGB, 

la dernière étape consiste à reconvertir l’image dans ce format. 

Dans cet exemple, la chaîne de traitement permet de révéler des informations potentiellement 

perdues, mais surtout de créer un environnement minimisant l’impact des variations de 

luminosité et de couleur dans l’environnement. 

 

8.3 Variations dans la fusion des capteurs 

La manière dont les données des capteurs sont fusionnées pour générer les estimations d’état 

constitue un facteur majeur dans la qualité des déplacements des prototypes, ce qui influence 
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à son tour la capacité à détecter et corriger la dérive. Il est donc important d’examiner 

précisément comment cette fusion est appliquée et quel en est l’impact. 

 

8.3.1 Approche basée uniquement sur l’EKF 

D’après les informations disponibles, cette approche correspond à l’implémentation actuelle 

de la solution. Dans cette approche, l’objectif est de laisser l’EKF réaliser la majeure partie du 

traitement, tandis que l’entrée du VSLAM est considérée simplement comme un capteur 

supplémentaire. Il est précisé que l’intégration actuelle applique la fermeture de boucle (loop 

closure) de manière asynchrone, mais les données montrent que son impact sur les résultats 

globaux est négligeable. C’est pourquoi il est indiqué que l’implémentation actuelle repose 

uniquement sur l’EKF. 
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Figure 17 Implémentation EKF Seulement 

Dans le modèle représenté à la Figure, l’EKF reçoit directement les données de chacun des 

capteurs et les associe aux 13 états correspondants. De plus, des covariances statiques sont 

attribuées à chaque entrée (telles que définies à la section 7.3). 

L’entrée VisData correspond à l’odométrie visuelle (VO) contenant les 13 états et est calculée 

en combinant les données visuelles et inertielles de la caméra. En définitive, il s’agit d’une 

approche très traditionnelle de la fusion de capteurs, mais également très robuste et fiable. 

Les problèmes liés à cette implémentation apparaissent lorsqu’on considère la manière exacte 

dont les données sont fusionnées. En pratique, l’EKF traite chaque flux de données de manière 

indépendante et les fusionne pour produire les états finaux. Cela signifie que les données ne 
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sont pas utilisées pour améliorer la qualité des résultats du VSLAM, entraînant la perte des 

optimisations intrinsèques au VSLAM, telles que l’effet global de la fermeture de boucle ou la 

cohérence de la carte à long terme. Cela découle du fait que l’EKF ne tient pas compte des 

données passées pour effectuer des corrections (fermeture de boucle), et que la correction de 

dérive ne s’applique qu’aux changements observés localement, et non aux corrections globales. 

Cette situation conduit directement à la nécessité d’utiliser des covariances plus élevées pour 

le VSLAM, en raison des incertitudes accrues, particulièrement lorsque les données visuelles 

sont de qualité limitée. 

  

8.3.2 Approche basée uniquement sur le VSLAM 

À l’inverse de l’approche basée uniquement sur l’EKF, l’approche VSLAM uniquement 

implique que l’ensemble des données capteurs soit fusionné directement au sein de 

l’algorithme VSLAM, et que l’odométrie visuelle résultante constitue l’estimation d’état 

finale. Cette approche permet d’obtenir une sortie VSLAM potentiellement beaucoup plus 

stable, mais entraîne une perte d’information provenant de chaque capteur pris 

individuellement. De plus, tous les algorithmes VSLAM ne sont pas conçus pour prendre en 

compte l’ensemble des types de capteurs. 

Il existe également une certaine perte d’information, puisque ce type de fusion ne traite pas 

explicitement les covariances, mais les considère de manière implicite à travers les étapes 

d’optimisation de l’algorithme. La manière dont les optimisations et la fermeture de boucle 

influencent le résultat final peut aussi engendrer des incohérences dans le contrôle du 

mouvement, selon la qualité et la disponibilité des données. 

Bien qu’il serait intéressant d’observer précisément le comportement de cette approche en 

milieu aquatique, il est également nécessaire de considérer qu’un EKF devrait idéalement être 
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placé juste en amont du MPC, afin d’éviter des fluctuations de données excessives qui 

pourraient entraîner une défaillance du MPC. 

 

8.3.3 Approche hybride (late fusion) 

L’approche hybride constitue la solution théorique idéale (Dellaert et Kaess, 2017). La manière 

exacte de l’implémenter dépend toutefois du type d’algorithme VSLAM utilisé. L’objectif est 

de laisser le VSLAM effectuer l’ensemble des optimisations et des fermetures de boucle, puis 

d’injecter ces résultats dans l’EKF. 

La première étape consiste à déterminer quelles informations sont transmises au VSLAM et 

lesquelles sont envoyées directement à l’EKF, indépendamment de la VO. La logique sous-

jacente est d’identifier quels flux de données ont l’impact le plus bénéfique sur chaque 

composant. 

En tenant compte des capteurs existants et en supposant que l’algorithme VSLAM utilisé est 

compatible avec la fusion proposée, voici une architecture suggérée : L’algorithme VSLAM 

recevrait les données de la caméra stéréo et de son IMU interne, ainsi que celles des capteurs 

contribuant à la cohérence globale, tels que le DVL et le capteur de profondeur, qui agiraient 

comme contraintes supplémentaires (Huang et al., 2025). De son côté, l’EKF intégrerait l’IMU 

centrale, le DVL, le capteur de profondeur et la pose issue du VSLAM. La justification de cette 

répartition repose sur le fait que le MPC nécessite des états du système à une fréquence 

constante. 

Un facteur important à considérer avec cette approche est que la logique de fermeture de boucle 

n’influence pas directement la boucle de contrôle de l’EKF, tout en restant prise en compte 

indirectement. Les corrections sont appliquées dans le repère global afin que la cartographie et 

la localisation globale du VSLAM continuent de fonctionner correctement, sans introduire de 

sauts ou de changements significatifs au niveau local. Cela permettrait d’établir des références 
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globale et locale stables, assurant un fonctionnement fluide du système de contrôle et limitant 

l’accumulation de dérive à long terme. 

Un autre point à considérer est d’éviter l’évaluation redondante des mêmes données. En 

pratique, si le VSLAM intègre déjà les informations du DVL et du capteur de profondeur, les 

liaisons directes de ces capteurs vers l’EKF devraient être désactivées ou limitées à un rôle de 

simple indication, plutôt qu’à une influence directe. 

 

8.4 Validation de la stabilité visuelle 

La dernière technique recommandée consiste à mettre en œuvre une méthode permettant 

d’évaluer la qualité du flux visuel ou de la sortie du VSLAM. La manière exacte d’y parvenir 

dépendra de l’implémentation spécifique des capteurs et de l’algorithme VSLAM utilisé, mais 

l’impact attendu demeurera le même. 

L’objectif serait de relier le résultat de cet algorithme d’évaluation à des covariances variables 

du bloc EKF implémenté. Le caractère temporellement variable de ces covariances est 

essentiel, car il implique que le niveau de confiance accordé par le système à un capteur donné 

peut évoluer au cours du temps. 

Le VSLAM fournit déjà en temps réel les covariances associées à l’odométrie visuelle qu’il 

génère, lesquelles pourraient être intégrées directement dans l’EKF. Toutefois, il est également 

pertinent de prendre en compte la qualité du flux visuel afin de déterminer si l’odométrie 

visuelle doit être totalement ignorée dans certaines situations. Cette approche permettrait un 

contrôle beaucoup plus fin de la qualité du contrôle du mouvement, en offrant la capacité de 

filtrer de manière appropriée des résultats imprécis ou erronés. 





 

   

 

CONCLUSION 

L’objectif de ce projet était d’évaluer la faisabilité de l’intégration d’un algorithme de VSLAM 

avec les prototypes existants de contrôle, dans le but de réduire l’accumulation de dérive au 

cours de la navigation. D’un point de vue théorique, cette approche est cohérente et pertinente, 

puisqu’il a été démontré qu’elle fonctionne dans divers contextes en robotique. Toutefois, un 

facteur qui n’a pas été pris en compte dans ces implémentations documentées est l’impact du 

milieu aquatique. Ainsi, des facteurs environnementaux imprévus ont eu un impact significatif 

tout au long du projet et ont engendré des défis importants. 

En particulier, l’environnement aquatique a influencé des paramètres tels que la luminosité, la 

distorsion des couleurs et la faible visibilité, ce qui a fortement réduit la capacité à détecter des 

marqueurs géographiques dans l’espace entourant l’AUV. L’ensemble de ces éléments a 

conduit à une diminution de la fiabilité et de la stabilité de la chaîne de traitement VSLAM. 

Par conséquent, bien que le système ait démontré certaines fonctionnalités, il était loin 

d’atteindre le niveau de robustesse requis pour répondre à l’objectif initial en milieu aquatique. 

Ces limitations n’invalident pas la solution proposée, mais mettent plutôt en évidence la 

complexité accrue du problème lié à l’utilisation de techniques de vision dans un 

environnement sous-marin. 

Le chapitre 8 présente plusieurs axes de recherche et pistes d’amélioration permettant de 

répondre à un grand nombre des lacunes identifiées lors des essais. En particulier, l’utilisation 

d’un algorithme de VSLAM alternatif, l’amélioration du prétraitement visuel ainsi que la mise 

en œuvre d’une fusion de capteurs hybride pourraient avoir un impact significatif sur la 

robustesse et la qualité de la solution finale, à condition de disposer de suffisamment de temps 

de développement. Avec davantage de raffinement, de tests et d’ajustements, les idées 

présentées dans ce rapport demeurent réalisables. 

Par ailleurs, bien que plusieurs cas d’utilisation aient été initialement définis pour l’évaluation, 

seul le premier a été exploité durant la phase expérimentale. Les deux autres cas d’utilisation 
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n’ont pas pu être mis en œuvre en raison de problèmes de stabilité et de fiabilité des 

mouvements, causés par un manque de tests expérimentaux indépendants de ce projet. Cette 

limitation souligne davantage l’importance de mécanismes de stabilisation secondaires, en 

particulier dans le cas du prototype LITE1. L’intégration de telles stratégies de stabilisation 

serait essentielle pour permettre des capacités de déplacement plus avancées. 

L’accès à une piscine afin de réaliser des tests fut également très difficile. En plus du prix, il 

faut également trouver un bassin disponible ainsi qu’une période avec suffisamment de 

membres de S.O.N.I.A. disponibles afin que les tests se déroulent comme prévu. Tous ces 

facteurs, sans compter les problèmes techniques imprévus, tels que le bris du tether utilisé lors 

des tests, ont fait en sorte que les premiers essais en piscine n’ont pas eu lieu avant la remise 

du rapport d’étape. Cela a grandement impacté la planification originelle et a causé du retard, 

notamment pour l’obtention des résultats et l’analyse de ceux-ci.  

En conclusion, ce projet démontre que, bien que l’architecture de navigation proposée soit 

théoriquement solide et conceptuellement appropriée, son déploiement réussi nécessite un 

temps de développement nettement plus important, une expérimentation approfondie et des 

efforts de raffinement supplémentaires. Les enseignements tirés de ce travail constituent 

néanmoins une base solide pour des travaux futurs et apportent des leçons précieuses en vue 

de l’objectif à long terme d’une navigation autonome sous-marine fiable au sein de S.O.N.I.A. 
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